CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers

Hits 1 to 20 of 210

_id c898
authors Gero, John S.
year 1986
title An Overview of Knowledge Engineering and its Relevance to CAAD
source Computer-Aided Architectural Design Futures [CAAD Futures Conference Proceedings / ISBN 0-408-05300-3] Delft (The Netherlands), 18-19 September 1985, pp. 107-119
summary Computer-aided architectural design (CAAD) has come to mean a number of often disparate activities. These can be placed into one of two categories: using the computer as a drafting and, to a lesser extent, modelling system; and using it as a design medium. The distinction between the two categories is often blurred. Using the computer as a drafting and modelling tool relies on computing notions concerned with representing objects and structures numerically and with ideas of computer programs as procedural algorithms. Similar notions underly the use of computers as a design medium. We shall return to these later. Clearly, all computer programs contain knowledge, whether methodological knowledge about processes or knowledge about structural relationships in models or databases. However, this knowledge is so intertwined with the procedural representation within the program that it can no longer be seen or found. Architecture is concerned with much more than numerical descriptions of buildings. It is concerned with concepts, ideas, judgement and experience. All these appear to be outside the realm of traditional computing. Yet architects discoursing use models of buildings largely unrelated to either numerical descriptions or procedural representations. They make use of knowledge - about objects, events and processes - and make nonprocedural (declarative) statements that can only be described symbolically. The limits of traditional computing are the limits of traditional computer-aided design systems, namely, that it is unable directly to represent and manipulate declarative, nonalgorithmic, knowledge or to perform symbolic reasoning. Developments in artificial intelligence have opened up ways of increasing the applicability of computers by acquiring and representing knowledge in computable forms. These approaches supplement rather than supplant existing uses of computers. They begin to allow the explicit representations of human knowledge. The remainder of this chapter provides a brief introduction to this field and describes, through applications, its relevance to computer- aided architectural design.
series CAAD Futures
last changed 2003/05/16 18:58

_id aa60
authors Christiansson, Per
year 1986
title Properties of Future Knowledge Based Systems : The Interactive Consultation System Example
source computer Aided Architectural Design - Developments in Education and Practice. 1986. 14 p. : ill. includes bibliography
summary An introduction to knowledge based systems is presented to point out possibilities and limitations of the new software and hardware technology now beginning to be available. A pilot study on the use of an expert system shell (the ES/P Advisor), is briefly discussed. A part of the Swedish concrete building code was implemented in the expert system shell to demonstrate the use of an interactive consultation system. Ideas on how compact video-discs can be used in this type of systems are also put forward
keywords knowledge base, systems, expert systems, CAD, media
series CADline
last changed 1999/02/12 14:07

_id 2d41
authors Flemming, Ulrich
year 1986
title The Role of Shape Grammars in the Analysis and Creation of Designs
source New York: John Wiley & Sons, 1986. pp. 213-244 : ill. includes bibliography
summary The paper gives an informal introduction to the shape grammar formalism. It presents results form a case study in which this formalism was applied to a realistic problem in order to convey the flavor of work with such grammars, to demonstrate its advantages and to show that our familiarity with this formalism has now progressed to a level were issues of architectural substance can be addressed. The paper concludes with the outline of a simple way to implement shape grammars by computer: it does not resolve the theoretical problems that exist for such implementations, but makes non-trivial applications like the case study possible
keywords shape grammars, design, architecture
series CADline
last changed 2003/02/26 16:24

_id 896b
authors Haider, Jawaid
year 1986
title A Conceptual Framework for Communication -Instruction in Architectural Design
source Pennsylvania State University
summary Existing design models, it is generally acknowledged, are inadequate to deal with the complexity of contemporary situations; and an assessment of self-conscious design manifests a slow development in the power and scope of conceptualizing. The quality of knowledge and conceptual tools available to the designer largely determine his ability to conceive and accomplish; conversely, the limitations of method are reflected in design solutions. Some emerging social problem-solving paradigms, which seek to construct a cognitive psychology of problem solving, have a direct relevance to architectural design. Notwithstanding the traditional criticism and scepticism, problem solving is predicated by task environment and problem space as these have a significant impact on design synthesis. Despite a rigorous search for theoretical perspectives and methods, the concern for the quality of the physical environment persists unabated. Historically, architecture has depended on other disciplines for its theoretical insight; but the application of borrowed theories without a viable framework for translation has often resulted in misinterpretation. Aggravating the problem is the art-science controversy which has consequences for architectural practice and education. What is required is a unified approach encompassing the scientific and artistic modes of inquiry. But a unified perspective, involving vast and disparate areas of human knowledge, demands a conceptual framework for integrative learning. The proposed model of this study provides such a framework and calls for a re-examination of the conventional boundaries of design disciplines. It advocates an interdisciplinary approach and recognizes the design process as inherently a learning process; this shifts the emphasis from product to process and allows students to plan and assess their own design/learning experience. While the study focuses on substantive issues, it identifies a strategy for integrative learning applicable within the existing context of design education. Despite its untested nature, the proposed model can become a vehicle for stimulating coordination of all facets of human knowledge and experience toward creative design synthesis. It inculcates a sense of critical assessment of generative ideas by presenting a conceptually clearer picture of the design process to elicit a response to and a better understanding of the task environment of architecture.
series thesis:PhD
last changed 2003/02/12 21:37

_id e26f
authors Kalay, Y. (ed.)
year 1987
title Computability of Design
source New York: Wiley & Sons
summary Computer-aided design (CAD) has promised to transform the art and science of architectural design. Yet, despite some significant achievements in the past 3 decades, it has so far failed to do so. This stimulating volume, derived from a symposium held at SUNY, Buffalo in December 1986, explores the reasons why design is so difficult to support by computational means, and what can be done to alleviate this difficulty. Written by an interdisciplinary panel of experts, it presents a varied and comprehensive view of the ways creative design processes can be modelled. The contributors do not all reach the same conclusions, which makes this book lively reading. Topics are arranged into four parts: constructing models of the design process, the computational representation of design knowledge (including spatial information and implicit design intent), methods for computing the design process as a whole (including mathematical programming, expert systems, and shape grammars), and the integration of CAD with traditional design practices.
series other
last changed 2003/04/23 13:14

_id sigradi2008_175
id sigradi2008_175
authors Knight, Terry; Larry Sass, Kenfield Griffith, Ayodh Vasant Kamath
year 2008
title Visual-Physical Grammars
source SIGraDi 2008 - [Proceedings of the 12th Iberoamerican Congress of Digital Graphics] La Habana - Cuba 1-5 December 2008
summary This paper introduces new visual-physical design grammars for the design and manufacture of building assembly systems that provide visually rich, culturally resonant design variations for housing. The building systems are intended to be tailored for particular cultures and communities by incorporating vernacular, decorative design into the assembly design. Two complementary areas of computational design research are brought together in this work: shape grammars and digital fabrication. The visual or graphic aspects of the research are explored through shape grammars. The physical design and manufacturing aspects are explored through advanced digital design and fabrication technologies and, in particular, build on recent work on mono-material assemblies with interlocking components that can be fabricated with CNC machines and assembled easily by hand on-site (Sass, 2007). This paper describes the initial, proof-of-concept stage of this work: the development of an automated, visual-physical grammar for an assembly system based on a vernacular language of Greek meander designs. A shape grammar for the two-dimensional Greek meander language (Knight, 1986) was translated into a three-dimensional assembly system. The components of the system are uniquely designed, concrete “meander bricks” (Figure 1). The components have integrated alignment features so that they can be easily fitted and locked together manually without binding materials. Components interlock horizontally to form courses, and courses interlock vertically in different ways to produce a visual variety of meander walls. The assembly components were prototyped at desktop scale with a layered manufacturing machine to test their appearance after assembly and their potential for design variations (Figure 2). Components were then evaluated as full-scale concrete objects for satisfaction of physical constraints related to concrete forming and component strength. The automated grammar (computer program) for this system generates assembly design variations with complete CAD/CAM data for fabrication of components formed from layered, CNC cut molds. Using the grammar, a full-scale mockup of a corner wall section was constructed to assess the structural, material, and aesthetic feasibility of the system, as well as ease of assembly. The results of this study demonstrate clearly the potentials for embedding visual properties in structural systems. They provide the foundations for further work on assembly systems for complete houses and other small-scale structures, and grammars to generate them. In the long-term, this research will lead to new solutions for economical, easily manufactured housing which is especially critical in developing countries and for post-disaster environments. These new housing solutions will not only provide shelter but will also support important cultural values through the integration of familiar visual design features. The use of inexpensive, portable digital design and fabrication technologies will allow local communities to be active, cooperative participants in the design and construction of their homes. Beyond the specific context of housing, visual-physical grammars have the potential to positively impact design and manufacture of designed artifacts at many scales, and in many domains, particularly for artifacts where visual aesthetics need to be considered jointly with physical or material requirements and design customization or variation is important.
keywords Shape grammar, digital fabrication, building assembly, mass customization, housing
series SIGRADI
last changed 2016/03/10 08:54

_id 0e5e
authors Kociolek, A.
year 1986
title CAD in Polish Building
source Computer-Aided Architectural Design Futures [CAAD Futures Conference Proceedings / ISBN 0-408-05300-3] Delft (The Netherlands), 18-19 September 1985, pp. 235-245
summary There is little CAAD in Polish architectural design offices, and only recently have practising architects discovered the computer. On the other hand, CAAD has been used for some time in research and development based at universities or in large design organizations. This chapter gives a broad picture of the computerization of building design in Poland, a complex process which concerns planning and financing, hardware, software, CAD practice, standardization, training, education, etc. Here architectural applications are treated on an equal basis, together with other applications representing design disciplines involved in design, such as structural and mechanical engineering. The underlying philosophy of this chapter is a belief that proper and well-balanced computerization of design in building which leaves creative work to human beings should result in better design and eventually in improvements in the built environment. Therefore integration of the design process in building seems more important for design practice than attempts to replace an architect by a computer, although the intellectual attraction of this problem is recognized.
series CAAD Futures
last changed 1999/04/03 15:58

_id 5509
authors Koutamanis, Alexandros
year 1990
title Development of a computerized handbook of architectural plans
source Delft University of Technology
summary The dissertation investigates an approach to the development of visual / spatial computer representations for architectural purposes through the development of the computerized handbook of architectural plans (chap), a knowledge-based computer system capable of recognizing the metric properties of architectural plans. This investigation can be summarized as an introduction of computer vision to the computerization of architectural representations: chap represents an attempt to automate recognition of the most essential among conventional architectural drawings, floor plans. The system accepts as input digitized images of architectural plans and recognizes their spatial primitives (locations) and their spatial articulation on a variety of abstraction levels. The final output of chap is a description of the plan in terms of the grouping formations detected in its spatial articulation. The overall structure of the description is based on an analysis of its conformity to the formal rules of its “stylistic” context (which in the initial version of chap is classical architecture). Chapter 1 suggests that the poor performance of computerized architectural drawing and design systems is among others evidence of the necessity to computerize visual / spatial architectural representations. A recognition system such as chap offers comprehensive means for the investigation of a methodology for the development and use of such representations. Chapter 2 describes a fundamental task of chap: recognition of the position and shape of locations, the atomic parts of the description of an architectural plan in chap. This operation represents the final and most significant part of the first stage in processing an image input in machine environment. Chapter 3 moves to the next significant problem, recognition of the spatial arrangement of locations in an architectural plan, that is, recognition of grouping relationships that determine the subdivision of a plan into parts. In the absence of systematic and exhaustive typologic studies of classical architecture that would allow us to define a repertory of the location group types possible in classical architectural plans, Chapter 3 follows a bottom-up approach based on grouping relationships derived from elementary architectural knowledge and formalized with assistance from Gestalt theory and its antecedents. The grouping process described in Chapter 3 corresponds both in purpose and in structure to the derivation of a description of an image in computer vision [Marr 1982]. Chapter 4 investigates the well-formedness of the description of a classical architectural plan in an analytical manner: each relevant level (or sublevel) of the classical canon according to Tzonis & Lefaivre [1986] is transformed into a single group of criteria of well-formedness which is investigated independently. The hierarchical structure of the classical canon determines the coordination of these criteria into a sequence of cognitive filters which progressively analyses the correspondence of the descriptions derived as in Chapter 3 to the constraints of the canon. The methodology and techniques presented in the dissertation are primarily considered with respect to chap, a specific recognition system. The resulting specification of chap gives a measure of the use of such a system within the context of a computerized collection of architectural precedents and also presents several extensions to other areas of architecture. Although these extensions are not considered as verifiable claims, Chapter 5 describes some of their implications, including on the role of architectural drawing in computerized design systems, on architectural typologies, and on the nature and structure of generative systems in architecture.
series thesis:PhD
last changed 2003/02/12 21:37

_id aad7
authors Mackenzie, C.A. and Gero, John S.
year 1986
title Learning in the Domain of Decisions and Performances
source IAAI'86 Conference. 1986. pp. i:1:1-9. CADLINE has abstract only
summary Many domains present themselves as mappings between two classes of spaces: decision spaces and performance spaces. All design domains can be represented in this manner where the designer takes decisions which manifest themselves as performances in the designed artifact. Learning in these domains can take account of the structural characteristics of the spaces and of the mappings. This paper describes a system, PARE, which learns in the domain of decisions and performances by making use of the characteristics of a particular structuring concept known as 'Pareto optimality.' Much is known about the concept and its features which are used as hypotheses. If the hypotheses succeed then learning takes place by specializing the hypotheses' characteristics. Characterizations of Pareto optimality are described and the feature extraction process shown. The feature extraction process utilizes fuzzy pattern matching. An example of the system, written in ConSUN workstations, is presented from the domain of fenestration design
keywords performance, learning, design process, optimization, analysis, applications, theory, systems
series CADline
last changed 2003/06/02 11:58

_id c3ca
authors Rasdorf, William J. and Watson, Bruce R.
year 1986
title ADI : An Adaptive Database Interface for Dynamic Databases
source ASME Symposium Proceedings on Knowledge based Expert Systems for Manufacturing. Anaheim, CA: American Society of Mechanical Engineers, Production Engineering Division, December, 1986. pp. 119-130. CADLINE has abstract only
summary The operation of a manufacturing organization often depends on its underlying design and manufacturing databases. In a manufacturing environment, many users, both individuals and application programs, must have access to one or more of the organization's databases to provide, use, or modify data, to control information flow, and to facilitate information management. Such databases routinely undergo dynamic changes in both their content and their structure. These changes commonly result from the design of new products, the introduction of new materials, and the introduction of new machines and processes on the shop floor. Such continuing changes must be reflected in the database schemas and subsequently require that application programs be updated and that online users be educated on a continuous basis. The problem addressed in this paper is that it is difficult for users and application programs to get the information that they need, when they need it, from the multiple heterogeneous database management system (DBMS) environments that have evolved in design and manufacturing organizations. The solution proposed here is to build a general, extendable interface between database users and the many sources of data available to them. This in itself is not a new suggestion; a number of researchers have addressed portions of this problem. In general, the interfaces that they have developed to date are best suited to environments where the structure of the database is static and does not change over time. One of the things that this paper proposes that is different from existing work is an interface which handles the dynamic restructuring nature of manufacturing databases, enabling a user to obtain the most accurate and up to date information as the structure and content of the underlying databases change. Another unique aspect of the DBMS interface proposed herein is that the interface attempts to capture the knowledge that an experienced human user incorporates in his search for data in a database, i.e., it seeks to identify and use the generic knowledge needed to operate a DBMS. This knowledge is used by the interface to enable both the online users and the application programs to request data without knowing the data's location or precisely how to ask for it. Further, the interface makes use of mechanisms that allow the user to request data without knowing the exact identity of the required entities that are stored in the database
keywords engineering, database, manufacturing, user interface
series CADline
last changed 2003/06/02 08:24

_id 6cfe
authors Wagter, H.
year 1986
title A New Generation Needs New Tools (A Proposal for a Joint Effort)
source Teaching and Research Experience with CAAD [4th eCAADe Conference Proceedings] Rome (Italy) 11-13 September 1986, pp. 323-327
summary After an introduction describing the present situation on computer- programs used in learning environments, some remarks are made on what future programs should look like. Although the design and the building process are both extremely complex, a proposal is made to carry out a project in a joint effort among ECAADE members to achieve a new generation of learning tools. These tools should also be of good service in a consulting environment.
series eCAADe
last changed 2003/05/16 19:36

_id 02c6
authors Wheeler, B.J.Q
year 1986
title A Unified Model for Building
source Computer-Aided Architectural Design Futures [CAAD Futures Conference Proceedings / ISBN 0-408-05300-3] Delft (The Netherlands), 18-19 September 1985, pp. 200-231
summary It is commonly recognized that the time-honoured procedure for preparing an architectural design for building on site is inefficient. Each member of a team of consultant professionals makes an independently documented contribution. For a typical project involving an architect and structural, electrical, mechanical and public services engineers there will be at least five separate sets of general- arrangement drawings, each forming a model of the building, primarily illustrating one discipline but often having to include elements of others in order to make the drawing readable. For example, an air-conditioning duct-work layout is more easily understood when superimposed on the room layout it serves which the engineer is not responsible for but has to understand. Both during their parallel evolution and later, when changes have to be made during the detailed design and production drawing stages, it is difficult and time consuming to keep all versions coordinated. Complete coordination is rarely achieved in time, and conflicts between one discipline and another have to be rectified when encountered on site with resulting contractual implications. Add the interior designer, the landscape architect and other specialized consultants at one end of the list and contractors' shop drawings relating to the work of all the consultants at the other, and the number of different versions of the same thing grows, escalating the concomitant task of coordination. The potential for disputes over what is the current status of the design is enormous, first, amongst the consultants and second, between the consultants and the contractor. When amendments are made by one party, delay and confusion tend to follow during the period it takes the other parties to update their versions to include them. The idea of solving this problem by using a common computer-based model which all members of the project team can directly contribute to is surely a universally assumed goal amongst all those involved in computer-aided building production. The architect produces a root drawing or model, the 'Architect's base plan', to which the other consultants have read-only access and on top of which they can add their own write-protected files. Every time they access the model to write in the outcome of their work on the project they see the current version of the 'Architect's base plan' and can thus respond immediately to recent changes and avoid wasting time on redundant work. The architect meanwhile adds uniquely architectural material in his own overlaid files and maintains the root model as everybody's work requires. The traditional working pattern is maintained while all the participants have the ability to see their colleagues, work but only make changes to those parts for which they are responsible.
series CAAD Futures
last changed 1999/04/03 15:58

_id 2df1
authors Woodbury, Robert F.
year 1986
title Strategies for Interactive Design Systems
source 20 p. : ill. Pittsburgh, PA: Engineering Design Research Center, September, 1986. EDRC-48-02-87.
summary An information processing model of human problem solving is used to develop strategies for the design of systems for the interactive generation of designs. Systems of this type are currently not strongly developed anywhere, nor does there exist in the literature a paradigm for their creation. Design is a task which requires different interactive support than that traditionally provided by CAD systems. In this paper, those differences are uncovered by comparison of two tasks: one, named Definition in this paper, which seems to be well supported by existing systems; and the other, the task of Design. Use of an information processing model of human problem solving shows that differences between the tasks can be found in every potentially variant portion of the model. The information processing model is again used as a framework to propose mechanisms to support design. These mechanisms act by changing the underlaying phenomena upon which the information processing model is built and thus effecting changes, either parametric or structural, in the model. The relative importance of the proposed mechanisms is discussed, leading to the conclusion that the interactive support of search is the most strategic direction for future research
keywords design process, problem solving, research, techniques, user interface, systems
series CADline
last changed 2003/06/02 11:58

_id 1083
authors Wu, Rui
year 2002
title Computer Aided Dimensional Control in Building Construction
source Eindhoven University of Technology
summary Dimensional control in the building industry can be defined as the operational techniques and activities that are necessary, during the construction process of a building, for the assurance of the defined dimension quality of a building (Hoof, 1986). Efficient and precise dimensional control of buildings under construction is becoming ever more important because of changes in the construction industry. More prefabricated components are used; more regulations appear; newly designed buildings have more complex shapes, and building construction is speeding up. To ensure the predefined dimensional quality, a plan of dimensional control must be designed, on the basis of building drawings and specifications delivered by architects, before the building is constructed. The dimensional control plan must provide site personnel with adequate information on, among others, setting out and assembling building components, which can often be done by means of Total Stations. The essence of designing a dimensional control plan is to find out which points should be used as positioning points, which points should be set out in advance or controlled afterwards, and not to forget why. In an effort to contribute to the improvement of the dimensional control of on-site construction projects, this research tries to capture the knowledge required to design an adequate dimensional control plan and make that knowledge more generally available, and build a digital connection between CAD systems and Total Stations, focusing on prefabricated concrete building structural elements. The instrument developed in this research for capturing of essential dimensional control information and knowledge makes use of Product Data Technology (PDT) and Knowledge Technology (KT). The chosen solution supports the stochastic analysis of optimal positioning points taking account of various sorts of deviations and their mutual relationships. The resulting information model has been written in a standardized information modelling language called UML (Unified Modelling Language). The model has been implemented in a Dimensional Control System (DCS) and applied in the “La Tour” construction project in Apeldoorn, the Netherlands. The DCS provides a digital way to bridge the floor plan design with dimensional control, predict dimensional deviation limits and output the data needed for a Total Station. The case study of “La Tour” tests the UML model and prototype of the DCS. The results prove that direct positioning of objects (by putting reflectors on the objects and using a Total Station and by inputting coordinates extracted and calculated from the AutoCAD drawings) provides higher speed, accuracy and reliability. It also shows a way to (pre)position free form objects in 3D where traditional methods cannot. In conclusion: (1) it seems to be justified to expect that the application of the DCS will contribute to increased confidence in dimensional control and the reduction of costs of failure, which potentially could support the increased use of cheaper construction methods, and will also contribute to the improvement of building design and construction process. (2) the scientific contribution of this research is a first step towards providing dimensional quality in a construction process covered by stochastic dimensional uncertainty, even for positioning of free form objects.
keywords Construction Management; Constructional Engineering; Computer Applications
series thesis:PhD
last changed 2003/02/12 21:37

_id 678e
authors Aish, Robert
year 1986
title Three-dimensional Input and Visualization
source Computer-Aided Architectural Design Futures [CAAD Futures Conference Proceedings / ISBN 0-408-05300-3] Delft (The Netherlands), 18-19 September 1985, pp. 68-84
summary The aim of this chapter is to investigate techniques by which man-computer interaction could be improved, specifically in the context of architectural applications of CAD. In this application the object being designed is often an assembly of defined components. Even if the building is not actually fabricated from such components, it is usually conceptualized in these terms. In a conventional graphics- based CAD system these components are usually represented by graphical icons which are displayed on the graphics screen and arranged by the user. The system described here consists of three- dimensional modelling elements which the user physically assembles to form his design. Unlike conventional architectural models which are static (i.e. cannot be changed by the users) and passive (i.e. cannot be read by a CAD system), this model is both 'user generated' and 'machine readable'. The user can create, edit and view the model by simple, natural modelling activities and without the need to learn complex operating commands often associated with CAD systems. In particular, the user can view the model, altering his viewpoint and focus of attention in a completely natural way. Conventional computer graphics within an associated CAD system are used to represent the detailed geometry which the different three-dimensional icons may represent. In addition, computer graphics are also used to present the output of the performance attributes of the objects being modelled. In the architectural application described in this chapter an energy- balance evaluation is displayed for a building designed using the modelling device. While this system is not intended to offer a completely free-form input facility it can be considered to be a specialist man-machine interface of particular relevance to architects or engineers.
series CAAD Futures
last changed 2003/11/21 14:15

_id 242d
authors Atkin, Brian L. and Gill, E. Moira
year 1986
title CAD and Management of Construction Projects
source Journal of Construction Engineering and Management, Vol. 112, December, pp. 557-565
summary The increasing interest in computer-aided design (CAD) has prompted research that is aimed at identifying the opportunities for construction managers and building contractors. It has been found that the use of CAD systems in the U.K. is mainly confined to the production of detailed drawings. Indeed, most of the systems used are 2-D drafting tools and incapable of supporting the integration of even modest amounts of nongraphical (construction) data. On the other hand, many 3-D modeling systems have the potential to integrate construction data, although they appear to be almostignored. The use of 3-D modeling systems is considered to be the most suitable vehicle for successfully integrating these data. However, this is likely to necessitate the introduction of separate databases, preferably of the relational type. The use of 3-D modeling systems in assessing the construction implications of outline designs also presents interesting possibilities and is discussed.
series journal paper
last changed 2003/04/23 13:14

_id 0f76
authors Balachandran, M. B. and Gero, John S.
year 1986
title Knowledge-based Design Optimization
source IAAI'86 Conference. 1986. pp. i:4:1-14
summary CADLINE has abstract only. Optimization is a well understood process in design domains. A designer formulates the design problem as a single criterion or multicriteria optimization problem and then selects an appropriate optimization algorithm to search for the optimal values for the design variables. The formulation and algorithm selection procedures have been considered to be activities which relied on substantive human knowledge. This paper describes a computer system, OPTIMA, which formulates design optimization problems from a pseudo-English description into canonical algebraic expressions. It then recognizes the formulation and selects appropriate algorithm(s) for their solutions. Finally, it runs the selected algorithm(s) and sends the results to the original descriptions. Areas of expert knowledge involved in carrying out the above tasks are identified. Such knowledge is explicitly encoded in the systems. The basic philosophy and key features of the system are described and are illustrated by examples
keywords algorithms, expert systems, knowledge base, design, optimization, structures, engineering
series CADline
last changed 2003/06/02 11:58

_id e220
authors Balachandran, M.B. and Gero, John S.
year 1986
title Formulating and Recognizing Engineering Optimization Problems
source Aus. Conf Mechs. Struct. and Mats (10th : 1986 : Adelaide) edited by G. Sved. pp. 223-228. CADLINE has abstract only.
summary In applying optimization methodology to engineering design, a considerable amount of knowledge is utilized to construct and solve mathematical design models. However, computer based systems to assist this process have concentrated mainly on the numeric computational aspects of the process. This paper outlines a computer system which uses a knowledge-based systems approach to formulate and recognize design optimization problems. Areas of expert knowledge involved in mathematical design modeling and optimization are identified. Such knowledge is encoded explicitly in the system. An example is presented
keywords knowledge base, systems, engineering, design, mathematics, modeling, structures
series CADline
last changed 2003/06/02 11:58

_id 4ed0
authors Bartels, R.H., Beatty, J.C. and Barsky, B.A.
year 1986
title An Introduction to Splines for Use in Computer Graphics and Geometric Modeling
source xiv, 476 p. : ill. (some col.) Los Altos, California: Morgan Kaufmann Pub. Inc., 1986. Forewords by Pierre Bezier and Robin A. Forrest. Includes bibliography: p. 455-465 and index
summary Discusses the use of splines from the point of view of the computer scientist concentrating on parametric spline curves and parametric,tensor-product spline surfaces
keywords splines, theory, computer graphics, computational geometry
series CADline
last changed 2003/06/02 12:42

_id b25c
authors Bergeson, Donald E. and Cetin, Randal F.
year 1986
title ADAM - Architectural Design Applications Model
source ACADIA Workshop ‘86 Proceedings - Houston (Texas - USA) 24-26 October 1986, pp. 37-54
summary This paper will describe ADAM, a project to explore the potential for interfacing independent graphics software for the purpose of developing a microcomputer based design system. This system will be implemented in three undergraduate design studios at the University of Illinois (Urbana-Champaign) School of Architecture. The three design studios are part of an experimental project to determine the usefulness of computers in the architectural design curriculum. The concept used throughout the design of this system is: "make use of what already exists, but use it smoothly together in such a way that the management system is totally invisible to the user." Many low- end quality graphics software packages are commercially available. Each has the capacity to address some aspect of the architectural design process, none will do it all . The problem is a lack of compatibility between software. ADAM is a management system designed to invisibly control and interface the use of an assembly of graphics programs and data base management systems to achieve compatibility. Because of these compatible interfaces, new and varied design tools can be created from existing software..
series ACADIA
last changed 1999/10/10 12:26

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 10HOMELOGIN (you are user _anon_619760 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002