CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 174

_id a7c1
authors Galle, Per
year 1987
title A Basic Problem Definition Language for Automated Floor Plan Design
source 113 p. 1987. DIKU Research Report No. 87/4
summary CADLINE has abstract only. Algorithms for automated floor plan design need a machine- readable description of properties of the desired floor plans. In this report BPDL ('Basic Problem Definition Language'), a rudimentary language for stating such descriptions, is developed. The development is based on a discussion of pragmatic aspects of possible features of the language. The resulting language is described by formal definitions of syntax and semantics, accompanied by informal explanations. Finally, experiments with a floor plan design algorithm that supports BPDL are reported and it is concluded that even a rudimentary language like BPDL can describe relatively non- trivial floor plan layouts, provided a set of geometrical primitives, attributes and relations that make up the language are carefully chosen. Further research along the lines of BPDL is suggested, and the importance of a systematic approach to development of future specification languages for architectural design is stressed
keywords architecture, floor plans, design, attributes, relations, semantics, algorithms, synthesis, planning, languages
series CADline
last changed 1999/02/12 14:08

_id 2ac0
authors Galle, Per
year 1987
title A Formalized Concept of Sketching in Automated Floor Plan Design
source 177 p. 1987. DIKO Research Report No.87/3
summary CADLINE has abstract only. Automated floor plan design, though originally motivated by the difficulties encountered by architects manually designing building layouts, raise several questions that may be of relevance to related application areas as well. e.g. design of electronic circuitry. One such question is, 'how do we come from a given set of constraints on size and placement of rooms (components) to a set of floor plans (circuit layouts) that satisfy these constraints?' In manual architectural design, sketches are used as an intermediate step. The present work is a study of a number of formalizations of the sketch concept which have been or could be used in computer- generation of architectural floor plans. A particular type of sketch, called the 'delta-derivative', is suggested and developed. The delta-derivative of a desired solution plan is an approximation of that solution plan and usually several other similar or 'equivalent' solutions. The idea is to generate sketches ('abstract' plans) before solutions ('concrete' plans), because they are simpler to compute, weeding out sketches that are not 'promising', and trying to refine the remaining sketches into solutions proper, thus limiting the amount of combinatorial search. Several abstraction levels of sketches may be used in this process. However, constraints as specified by the user of an automated design system are assumed to apply to the solutions; therefore a major theoretical problem which is addressed in the report is the derivation of sketch-level constraints that define which sketches to be generated. A comprehensive floor plan design system based on these ideas has been implemented, and empirical results are reported which confirms certain predicted advantages of delta-derivatives but also shows that the sketch-level constraints based on the developed theory are too weak if used alone; they allow generation of too many sketches which cannot possibly be refined into solutions. The report finally conjectures a solution to this problem
keywords CAD, planning, architecture, floor plans, design, combinatorics, programming, abstraction
series CADline
last changed 1999/02/12 14:08

_id eb5f
authors Al-Sallal, Khaled A. and Degelman, Larry 0.
year 1994
title A Hypermedia Model for Supporting Energy Design in Buildings
source Reconnecting [ACADIA Conference Proceedings / ISBN 1-880250-03-9] Washington University (Saint Louis / USA) 1994, pp. 39-49
summary Several studies have discussed the limitations of the available CAAD tools and have proposed solutions [Brown and Novitski 1987, Brown 1990, Degelman and Kim 1988, Schuman et al 1988]. The lack of integration between the different tasks that these programs address and the design process is a major problem. Schuman et al [1988] argued that in architectural design many issues must be considered simultaneously before the synthesis of a final product can take place. Studies by Brown and Novitski [1987] and Brown [1990] discussed the difficulties involved with integrating technical considerations in the creative architectural process. One aspect of the problem is the neglect of technical factors during the initial phase of the design that, as the authors argued, results from changing the work environment and the laborious nature of the design process. Many of the current programs require the user to input a great deal of numerical values that are needed for the energy analysis. Although there are some programs that attempt to assist the user by setting default values, these programs distract the user with their extensive arrays of data. The appropriate design tool is the one that helps the user to easily view the principal components of the building design and specify their behaviors and interactions. Data abstraction and information parsimony are the key concepts in developing a successful design tool. Three different approaches for developing an appropriate CAAD tool were found in the literature. Although there are several similarities among them, each is unique in solving certain aspects of the problem. Brown and Novitski [1987] emphasize the learning factor of the tool as well as its highly graphical user interface. Degelman and Kim [1988] emphasize knowledge acquisition and the provision of simulation modules. The Windows and Daylighting Group of Lawrence Berkeley Laboratory (LBL) emphasizes the dynamic structuring of information, the intelligent linking of data, the integrity of the different issues of design and the design process, and the extensive use of images [Schuman et al 19881, these attributes incidentally define the word hypermedia. The LBL model, which uses hypermedia, seems to be the more promising direction for this type of research. However, there is still a need to establish a new model that integrates all aspects of the problem. The areas in which the present research departs from the LBL model can be listed as follows: it acknowledges the necessity of regarding the user as the center of the CAAD tool design, it develops a model that is based on one of the high level theories of human-computer interaction, and it develops a prototype tool that conforms to the model.

series ACADIA
email l-degelman@neo.tamu.edu
last changed 2003/11/21 14:15

_id e820
authors Armstrong, W.W., Green, M. and Lake, R.
year 1987
title Near- Real-Time Control of Human Figure Models
source IEEE Computer Graphics and Applications. June, 1987. vol. 7: pp. 52-60 : ill
summary Includes bibliography. Animating human figures is one of the major problems in computer animation. A recent approach is the use of dynamic analysis to compute the movement of a human figure, given the forces and torques operating within and upon the body. One of the problems with this technique is computing the forces and torques required for particular motions: this has been called the control problem of dynamic analysis. To develop a better understanding of this problem, an interactive interface to a dynamics package has been produced. This interface, along with a collection of low-level motion processes, can be used to control the motion of a human figure model. This article describes both the user interface and the motion processes, along with experiences with this approach
keywords computer graphics, animation, user interface
series CADline
last changed 2003/06/02 12:41

_id a820
authors Bjerg, Kresten
year 1987
title FULL-SCALE IN ANOTHER SENSE
source Proceedings of the 1st European Full-Scale Workshop Conference / ISBN 87-88373-20-7 / Copenhagen (Denmark) 15-16 January 1987, pp. 31-35
summary My point of departure is a long standing interest in close human communication. I have been much interested in the multiplicities of communicative levels between persons sharing daily life, e.g. spouses in a household. In the mid-sixties I was working with the first videotapings of marital dyads in a laboratory setting. The "interplay- analysis" which I developed at that time, however, was hampered by the lack of contextual naturalism in the setting. Since - working in the field of "altered states of consciousness" - I came to question the adequacy of studies of extra-ordinary states, in view of the lacking methodology for dealing even with the ranges of the variable ordinary states of mind over the 24-hour cycle in everyday life, and their potential relation to the micro-structure of the habitual ongoing activities of members of a household.
keywords Full-scale Modeling, Model Simulation, Real Environments
series other
type normal paper
more http://info.tuwien.ac.at/efa
last changed 2004/05/04 13:08

_id 8e02
authors Brown, A.G.P. and Coenen, F.P.
year 2000
title Spatial reasoning: improving computational efficiency
source Automation in Construction 9 (4) (2000) pp. 361-367
summary When spatial data is analysed the result is often very computer intensive: even by the standards of contemporary technologies, the machine power needed is great and the processing times significant. This is particularly so in 3-D and 4-D scenarios. What we describe here is a technique, which tackles this and associated problems. The technique is founded in the idea of quad-tesseral addressing; a technique, which was originally applied to the analysis of atomic structures. It is based on ideas concerning Hierarchical clustering developed in the 1960s and 1970s to improve data access time [G.M. Morton, A computer oriented geodetic database and a new technique on file sequencing, IBM Canada, 1996.], and on atomic isohedral (same shape) tiling strategies developed in the 1970s and 1980s concerned with group theory [B. Grunbaum, G.C. Shephard, Tilings and Patterns, Freeman, New York, 1987.]. The technique was first suggested as a suitable representation for GIS in the early 1980s when the two strands were brought together and a tesseral arithmetic applied [F.C. Holdroyd, The Geometry of Tiling Hierarchies, Ars Combanitoria 16B (1983) 211244.; S.B.M. Bell, B.M. Diaz, F.C. Holroyd, M.J.J. Jackson, Spatially referenced methods of processing raster and vector data, Image and Vision Computing 1 (4) (1983) 211220.; Diaz, S.B.M. Bell, Spatial Data Processing Using Tesseral Methods, Natural Environment Research Council, Swindon, 1986.]. Here, we describe how that technique can equally be applied to the analysis of environmental interaction with built forms. The way in which the technique deals with the problems described is first to linearise the three-dimensional (3-D) space being investigated. Then, the reasoning applied to that space is applied within the same environment as the definition of the problem data. We show, with an illustrative example, how the technique can be applied. The problem then remains of how to visualise the results of the analysis so undertaken. We show how this has been accomplished so that the 3-D space and the results are represented in a way which facilitates rapid interpretation of the analysis, which has been carried out.
series journal paper
more http://www.elsevier.com/locate/autcon
last changed 2003/05/15 19:22

_id e7a8
authors Emde, H.
year 1988
title Geometrical Fundamentals for Design and Visualization of Spatial Objects
source CAAD futures 87 [Conference Proceedings / ISBN 0-444-42916-6] Eindhoven (The Netherlands), 20-22 May 1987, pp. 171-178
summary Every architectural object is a 3-dimensional entity of the human environment, haptically tangible and optically visible. During the architectural process of planning every object should be designed as a body and should be visualized in pictures. Thus the parts of construction get an order in space and the steps of construction get an order in time. The ideal planning object is a simulated anticipation of the real building object, which is to be performed later on. The possibility to relate the planning object immediately to the building object relies on the fact that they both have the same "geometry" This means: both can be described in the same geometric manner. Creating and visualizing spatial objects is based on geometrical fundamentals. Theoretical knowledge and practical control of these fundamentals is essential for the faultless construction and the realistic presentation of architectural objects. Therefore they have to be taught and learned thoroughly in the course of an architectural education. Geometrical design includes the forming of object- models (geometry of body boundaries), the structuring of object-hierarchies (geometry of body combinations) and the colouring of objects. Geometrical visualization includes controlling the processes of motion, of the bodies (when moving objects) and of the center of observation (when moving subjects) as well as the representation of 3-dimensional objects in 2- dimensional pictures and sequences of pictures. All these activities of architects are instances of geometrical information processing. They can be performed with the aid of computers. As for the computer this requires suitable hardware and software, as for the architect it requires suitable knowledge and capabilities to be able to talk about and to recall the perceivable objects and processes of the design with logic abstracts (language of geometry). In contrast to logical, numerical and textual informations the geometric informations concerning spatial objects are of much higher complexity. Usually these complexes of information are absorbed, processed and transmitted by the architect in a perceptive manner. The computer support in the field of geometry assumes that the processing of perceptions of the human consciousness can be converted by the computer as a framework of logical relations. Computer aided construction and representation require both suited devices for haptical and optical communication and suitable programs in particular.
series CAAD Futures
last changed 1999/04/03 15:58

_id 2389
authors Fischler, Martin A. and Firschein, Oscar
year 1987
title Intelligence : The Eye, The Brain, and the Computer
source xiv, 331 p. [4] p. of plates : ill. ( some col.) Reading, Mass.: Addison-Wesley Pub Co., 1987. includes bibliography: p. 311-323 and index.
summary This book presents a view of intelligence, both human and machine. It provides an understanding of the concept of intelligence, the nature of the cognitive and perceptual capabilities of people and computers and the representations and algorithms used to attain intelligent behavior
keywords AI, learning, cognition, perception, representation, theory
series CADline
last changed 2003/06/02 11:58

_id e524
authors Miranda, Valerian and Degelman, Larry 0.
year 1987
title An Experimental Computer-Aided Design Studio
source Integrating Computers into the Architectural Curriculum [ACADIA Conference Proceedings] Raleigh (North Carolina / USA) 1987, pp. 19-28
summary A pilot experiment was conducted in the use of microcomputers and Computer Aided Design (CAD) software for architectural design education. The CAD workstations were incorporated into two consecutive semesters of the third year design studio and consisted of TANDY 3000 HD (tm) microcomputers with 20 megabyte hard disks, digitizer tablets, digitizer mice, enhanced graphics capabilities, dot-matrix printers and multi-pen plotters. Software packages included the Personal Architect (tm), VersaCAD (tm), DataCAD (tm), word processing software etc. Student to machine ratio of 4 to 1 was maintained and the use of the equipment was made available to students for approximately 20 hours per day.

Design assignments neither emphasized nor required the use of CAD techniques, as the experiment was designed to measure the students' acceptance of and adaptation to the use of CAD tools. The objective was to "teach" design in the traditional sense of a design studio, while making the computer an integral part of the setting in which the student learned designing and problem solving.

Measurements were made of (1) time for the "fundamentals" learning curve, (2) time for a "basic competence" learning curve, (3) hours utilized by categories of type of use, (4) hours utilized by equipment and software type, and (5) progress in design ability as evaluated by the traditional jury review methods.

series ACADIA
email l-degelman@neo.tamu.edu
last changed 2003/05/16 17:23

_id ed0f
authors Moshe, R. and Shaviv, E.
year 1988
title Natural Language Interface for CAAD System
source CAAD futures 87 [Conference Proceedings / ISBN 0-444-42916-6] Eindhoven (The Netherlands), 20-22 May 1987, pp. 137-148
summary This work explores issues involved in the development of a natural interface for man-machine dialogue in architectural design processes. A hand-touch on an interactive surface is suggested as the best natural-language interface for architectural CAD systems. To allow the development of a rich range of hand-touch natural-language for communicating information and commands to the computer, it is proposed to develop a new type of a touch-panel, for which a set of specifications is presented. A conceptual design of an architectural workstation, having the described touch-panel, is presented. This workstation is characterized by the integration of the entire range of control and communication facilities required for any architectural task into a single interactive unit. The conceptual model for this workstation is the standard size drawing board, on which the architect is accustomed to spread documents, drawings, books and tools, shuffle them around and interchange them freely by using the natural-language interface developed in this work. The potential of the suggested hand-touch natural-language and the proposed workstation are demonstrated by a case-study.
series CAAD Futures
email arredna@techunix.technion.ac.il
last changed 2003/05/16 18:58

_id 0a9c
authors Ozel, Filiz
year 1987
title The Computer Model "BGRAF": A Cognitive Approach to Emergency Egress Simulation
source University of Michigan
summary During the past decade, fire safety researchers have come to the understanding that human factors in fires play an important role in controlling the spread of fire; and in decreasing the number of fire casualties in buildings. With the current developments in computer technology, computer modeling of human behavior in fires emerged as an effective method of research. Such computer modeling techniques offered the advantage of being able to experiment with hypothetical fires in buildings without Note endangering human life. Consequently, a study to develop a computer model that will simulate the emergency egress behavior of people in fires was undertaken. Changes in the information processing capacity of the individual as a result of time pressure and stress was considered as part of the emergency egress decision process. Theories from environmental psychology identified a range of cognitive factors, such as visual access in buildings, architectural differentiation, signage and plan configuration that affect way finding and route selection in buildings. These factors needed to be incorporated into emergency egress models. The model was based on the integrated building data base of the CAD system developed at the University of Michigan, Architecture and Planning Lab., which provided a comprehensive building definition, and allowed both graphic and tabular output. Two actual fire incidences were simulated as part of the validation study. These studies have stressed the importance of the cognitive aspects of the physical environment as a factor in emergency egress. A goal structure that represented the total decision process during fires was incorporated into the model. This structure allowed the inputting and testing of a variety of goal structures by using actions as model blocks. The objectives of the model developed in this study can best be summarized as to study and eventually to predict the route selection and exiting behavior in fires, with the purpose of using such information in making building design and code development decisions, and in suggesting action sequences that will best support the safety of the occupants of a building under different emergency conditions.
series thesis:PhD
email ozel@asu.edu
last changed 2003/02/12 21:37

_id 0cb8
authors Yessios, Chris I.
year 1987
title A Fractal Studio
source Integrating Computers into the Architectural Curriculum [ACADIA Conference Proceedings] Raleigh (North Carolina / USA) 1987, pp. 169-182
summary The experience of using computer aided architectural design tools in a second year graduate studio is presented. These tools had to be developed as the search for design solutions evolved. The computer has been used for the exploration and generation of architectural forms and very little as a drafting/rendering machine. The generative algorithms were based on fractal geometries, arabesque ornamentations, DNA/RNA biological processes' etc. The design problem was a Biological Research Complex. The whole experience raised some interesting pedagogical questions, which are also discussed.

series ACADIA
email cyessios@formz.com
last changed 2003/05/16 17:23

_id 866f
authors Zelissen, C.
year 1988
title From Drafting to Design: New Programming Tools are Needed
source CAAD futures 87 [Conference Proceedings / ISBN 0-444-42916-6] Eindhoven (The Netherlands), 20-22 May 1987, pp. 253-261
summary The software needed by engineers and architects shows two new aspects. First, these programs get more and more graphic elements, secondly there is a trend from general purpose packages to more problem oriented programs. Comparing several of these application depending programs, a strong similarity appears; a user builds up a representation of a (technical) model by placing, replacing, deleting and so on, representations of objects, belonging to this model. From the programmer's point of view, it must be possible to abstract the several models and the actions on the components of a model, and therefore to build one-program with a model description as parameter. Assuming the existence of such a program, the only remaining part needed to build a complete dedicated package has reference to the specific technical calculations. In this contribution we touch on a number of the problems in developing and implementing such a program.
series CAAD Futures
last changed 1999/04/03 15:58

_id 801f
authors Galle, Per
year 1987
title Branch & Sample : Systematic Combinatorial Search without Optimization
source 73 p. 1987. DIKU Research Report No. 87/5. CADLINE has abstract only
summary Many constraint satisfaction problems are combinatorically explosive, i.e. have far too many solutions. Optimization techniques may help in selecting solutions for consideration, but a reasonable measure of optimality is not always at hand. The branch & sample algorithm is presented as an alternative to optimization. If the constraints themselves limit the solution set sufficiently, the algorithm finds all solutions, but otherwise a suitable number of solutions (determined by the user) is generated, such that each new solution has a maximal distance to those already generated. The distance measure used is a so called ultrametric distance expressible in terms of the search tree: solutions are viewed as m-tuples of fixed length, each of whose m decision variables corresponds to a level in the search tree. The distance between two solutions is the number of edges from their leaf nodes to the closest common predecessor node in the tree. For problems whose decision variables depend on each other (as is often the case) the set of solutions generated in this way corresponds well to the intuitive notion of a 'representative sample.' The principles of Branch & Sample are first introduced informally, then the algorithm is developed by stepwise refinement, and two examples of its use are given. A fully tested application-independent implementation of the algorithm in C is given as an appendix
keywords algorithms, combinatorics, search, constraints, floor plans, layout, synthesis, architecture
series CADline
last changed 1999/02/12 14:08

_id 861a
authors Sedas, Sergio W. and Talukdar, Sarosh N.
year 1987
title A Disassembly Planner for Redesign
source The Winter Annual Meeting of the American Society of Mechanical Engineers. Symposium of Intelligent and Integrated Manufacturing Analysis and Synthesis. December, 1987. Pittsburgh, PA: Engineering Design Research Center, CMU, 1988. [6] p. : ill. includes bibliography
summary This paper describes an algorithm for generating plans for disassembling given objects. The plans are produced by a set of knowledge sources acting on a set of representations for the object. Both sets are arbitrarily expandable, so programs using the approach can grow continually in capability. Our present complement of knowledge sources and representations can tackle relatively difficult problems. Three examples are included. The first requires a good bit of geometric reasoning before appropriate subassemblies can be selected. The second and third require certain movable parts to be repositioned before disassembly can be achieved
keywords algorithms, representation, synthesis, assemblies, knowledge, reasoning, mechanical engineering
series CADline
last changed 2003/06/02 11:58

_id 0a09
authors Akin, O., Dave, B. and Pithavadian, S.
year 1987
title Problem Structuring in Architectural Design
source February, 1987. [4], 15 p. : ill. includes bibliography
summary The purpose of this research is to describe in operational terms the process of problem structuring while solving spatial problems in architectural design. The designer's behavior is described in terms of problem structuring, when problem parameters are established or transformed, and in terms of problem solving when these parameters are satisfied in a design solution. As opposed to problem solving, the structuring of problems is an under-studied but crucial aspect of complex tasks such as design. This work is based on observations derived from verbal protocol studies. To consider various levels of skill, the research subjects range from professional architects to novice designers. Subjects are given space planning problems which require them to develop solutions in accordance with individually established constraints and criteria, the majority of which are not explicit stated in the problem description. Based on the results of the protocol analysis, a framework is developed which explains how information processing characteristics, problem structure and different levels of expertise interact to influence the designer behavior
keywords architecture, design process, problem solving, protocol analysis, problem definition
series CADline
email oa04@andrew.cmu.edu
last changed 2003/05/17 08:09

_id ae05
authors Akin, Omer
year 1987
title Expertise of the Architect
source November, 1987. [13] p. unevenly numbered : ill. includes bibliography
summary One of the areas where the expertise of the seasoned architect comes out is in the initial structuring of design problems. During problem structuring the parameters and processes used in design are defined. Experienced architects modify these parameters both in global and local levels as a function of the success of their research process. Experienced architects also rely on 'scenarios' acquired through pervious experiences with similar problems to initialize their problem structures or to redefined them
keywords design, architecture, methods
series CADline
email oa04@andrew.cmu.edu
last changed 2003/05/17 08:09

_id 4d3b
authors Archea, John
year 1987
title Puzzle-Making : What Architects Do When No One is Looking
source New York: Wiley-Interscience, 1987. pp. 37-52. includes bibliography
summary The thesis of this paper is that architects work in a manner that is antithetical to problem-solving because they cannot explicate desired effects prior to their realization through the design process. In an attempt to clarify architecture's uncommon mode of action the author suggests that instead of specifying what they are trying to accomplish prior to their attempts to accomplish it as problem-solver do, architects treat design as a search for the most appropriate effects that can be attained in a unique context. They seek sets of combinatorial rules that will result in an internally consistent fit between a kit of parts and the effects that are achieved when those parts are assembled in a certain way
keywords puzzle making, problem solving, architecture, design process
series CADline
last changed 1999/02/12 14:07

_id 8eb4
authors Athithan, G. and Patnaik, L.M.
year 1987
title Geometric Searching In Extended CSG Models : Application to Solid Modeling and Viewing
source February, 1987. 30 p. : ill
summary In this paper, the CSG representation scheme is augmented with the 'cartesian product.' The sweep method of generating solids is encompassed by this 'Extended CSG' formalism. The point inclusion problem encountered in the area of geometric searching in computational geometry is discussed in the context to solid models represented by 'extended CSG.' A simple algorithm to solve it that has a time complexity O(n), where n is the number of primitives, is presented. Allowing for preprocessing and extra storage, a second efficient algorithm, having a time complexity O(log n), is developed. The relevance of point inclusion problem in solid modelling techniques is indicated. An extended CSG based solid modeling method is proposed. A solution to the problem of hidden line removal, that uses the faster algorithm for the point inclusion problem, is also presented in the paper
keywords point inclusion, computational geometry, data structures, solid modeling, CSG, computer graphics, hidden lines
series CADline
last changed 2003/06/02 12:41

_id 266d
authors Badler, Norman I., Manoochehri, Kamran H. and Walters, Graham
year 1987
title Articulated Figure Positioning by Multiple Constraints
source IEEE Computer Graphics and Applications. June, 1987. vol. 7: pp. 28-38 : ill. Includes bibliography
summary A problem that arises in positioning an articulated figures is the solution of 3D joint positions (kinematics), when joint angles are given. If more than one such goal is to be achieved, the problem is often solved interactively by positioning or solving one component of the linkage, then adjusting another, then redoing the first, and so on. This iterative process is slow and tedious. The authors present a method that automatically solves multiple simultaneous joint position goals. The user interface offers a six-degree-of freedom input device to specify joint angles and goal positions interactively. Examples are used to demonstrate the power and efficiency of this method for key-position animation
keywords animation, constraints, computer graphics
series CADline
last changed 2003/06/02 11:58

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 8HOMELOGIN (you are user _anon_770806 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002