CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers

Hits 1 to 20 of 159

_id 4a3c
authors Hall, T.
year 1988
title Computer Visualisation for design and control
source The Planner (London) 74(10), pp. 21-25
summary Contributed by Susan Pietsch (
keywords 3D City Modeling, Development Control, Design Control
series other
last changed 2001/06/04 18:27

_id 0711
authors Kunnath, S.K., Reinhorn, A.M. and Abel, J.F.
year 1990
title A Computational Tool for Evaluation of Seismic Performance of RC Buildings
source February, 1990. [1] 15 p. : ill. graphs, tables. includes bibliography: p. 10-11
summary Recent events have demonstrated the damaging power of earthquakes on structural assemblages resulting in immense loss of life and property (Mexico City, 1985; Armenia, 1988; San Francisco, 1989). While the present state-of-the-art in inelastic seismic response analysis of structures is capable of estimating response quantities in terms of deformations, stresses, etc., it has not established a physical qualification of these end-results into measures of damage sustained by the structure wherein system vulnerability is ascertained in terms of serviceability, repairability, and/or collapse. An enhanced computational tool is presented in this paper for evaluation of reinforced concrete structures (such as buildings and bridges) subjected to seismic loading. The program performs a series of tasks to enable a complete evaluation of the structural system: (a) elastic collapse- mode analysis to determine the base shear capacity of the system; (b) step-by-step time history analysis using a macromodel approach in which the inelastic behavior of RC structural components is incorporated; (c) reduction of the response quantities to damage indices so that a physical interpretation of the response is possible. The program is built around two graphical interfaces: one for preprocessing of structural and loading data; and the other for visualization of structural damage following the seismic analysis. This program can serve as an invaluable tool in estimating the seismic performance of existing RC buildings and for designing new structures within acceptable levels of damage
keywords seismic, structures, applications, evaluation, civil engineering, CAD
series CADline
last changed 2003/06/02 12:41

_id c7e9
authors Maver, T.W.
year 2002
title Predicting the Past, Remembering the Future
source SIGraDi 2002 - [Proceedings of the 6th Iberoamerican Congress of Digital Graphics] Caracas (Venezuela) 27-29 november 2002, pp. 2-3
summary Charlas Magistrales 2There never has been such an exciting moment in time in the extraordinary 30 year history of our subject area, as NOW,when the philosophical theoretical and practical issues of virtuality are taking centre stage.The PastThere have, of course, been other defining moments during these exciting 30 years:• the first algorithms for generating building layouts (circa 1965).• the first use of Computer graphics for building appraisal (circa 1966).• the first integrated package for building performance appraisal (circa 1972).• the first computer generated perspective drawings (circa 1973).• the first robust drafting systems (circa 1975).• the first dynamic energy models (circa 1982).• the first photorealistic colour imaging (circa 1986).• the first animations (circa 1988)• the first multimedia systems (circa 1995), and• the first convincing demonstrations of virtual reality (circa 1996).Whereas the CAAD community has been hugely inventive in the development of ICT applications to building design, it hasbeen woefully remiss in its attempts to evaluate the contribution of those developments to the quality of the built environmentor to the efficiency of the design process. In the absence of any real evidence, one can only conjecture regarding the realbenefits which fall, it is suggested, under the following headings:• Verisimilitude: The extraordinary quality of still and animated images of the formal qualities of the interiors and exteriorsof individual buildings and of whole neighborhoods must surely give great comfort to practitioners and their clients thatwhat is intended, formally, is what will be delivered, i.e. WYSIWYG - what you see is what you get.• Sustainability: The power of «first-principle» models of the dynamic energetic behaviour of buildings in response tochanging diurnal and seasonal conditions has the potential to save millions of dollars and dramatically to reduce thedamaging environmental pollution created by badly designed and managed buildings.• Productivity: CAD is now a multi-billion dollar business which offers design decision support systems which operate,effectively, across continents, time-zones, professions and companies.• Communication: Multi-media technology - cheap to deliver but high in value - is changing the way in which we canexplain and understand the past and, envisage and anticipate the future; virtual past and virtual future!MacromyopiaThe late John Lansdown offered the view, in his wonderfully prophetic way, that ...”the future will be just like the past, onlymore so...”So what can we expect the extraordinary trajectory of our subject area to be?To have any chance of being accurate we have to have an understanding of the phenomenon of macromyopia: thephenomenon exhibitted by society of greatly exaggerating the immediate short-term impact of new technologies (particularlythe information technologies) but, more importantly, seriously underestimating their sustained long-term impacts - socially,economically and intellectually . Examples of flawed predictions regarding the the future application of information technologiesinclude:• The British Government in 1880 declined to support the idea of a national telephonic system, backed by the argumentthat there were sufficient small boys in the countryside to run with messages.• Alexander Bell was modest enough to say that: «I am not boasting or exaggerating but I believe, one day, there will bea telephone in every American city».• Tom Watson, in 1943 said: «I think there is a world market for about 5 computers».• In 1977, Ken Olssop of Digital said: «There is no reason for any individuals to have a computer in their home».The FutureJust as the ascent of woman/man-kind can be attributed to her/his capacity to discover amplifiers of the modest humancapability, so we shall discover how best to exploit our most important amplifier - that of the intellect. The more we know themore we can figure; the more we can figure the more we understand; the more we understand the more we can appraise;the more we can appraise the more we can decide; the more we can decide the more we can act; the more we can act themore we can shape; and the more we can shape, the better the chance that we can leave for future generations a trulysustainable built environment which is fit-for-purpose, cost-beneficial, environmentally friendly and culturally significactCentral to this aspiration will be our understanding of the relationship between real and virtual worlds and how to moveeffortlessly between them. We need to be able to design, from within the virtual world, environments which may be real ormay remain virtual or, perhaps, be part real and part virtual.What is certain is that the next 30 years will be every bit as exciting and challenging as the first 30 years.
series SIGRADI
last changed 2016/03/10 08:55

_id eb5f
authors Al-Sallal, Khaled A. and Degelman, Larry 0.
year 1994
title A Hypermedia Model for Supporting Energy Design in Buildings
source Reconnecting [ACADIA Conference Proceedings / ISBN 1-880250-03-9] Washington University (Saint Louis / USA) 1994, pp. 39-49
summary Several studies have discussed the limitations of the available CAAD tools and have proposed solutions [Brown and Novitski 1987, Brown 1990, Degelman and Kim 1988, Schuman et al 1988]. The lack of integration between the different tasks that these programs address and the design process is a major problem. Schuman et al [1988] argued that in architectural design many issues must be considered simultaneously before the synthesis of a final product can take place. Studies by Brown and Novitski [1987] and Brown [1990] discussed the difficulties involved with integrating technical considerations in the creative architectural process. One aspect of the problem is the neglect of technical factors during the initial phase of the design that, as the authors argued, results from changing the work environment and the laborious nature of the design process. Many of the current programs require the user to input a great deal of numerical values that are needed for the energy analysis. Although there are some programs that attempt to assist the user by setting default values, these programs distract the user with their extensive arrays of data. The appropriate design tool is the one that helps the user to easily view the principal components of the building design and specify their behaviors and interactions. Data abstraction and information parsimony are the key concepts in developing a successful design tool. Three different approaches for developing an appropriate CAAD tool were found in the literature. Although there are several similarities among them, each is unique in solving certain aspects of the problem. Brown and Novitski [1987] emphasize the learning factor of the tool as well as its highly graphical user interface. Degelman and Kim [1988] emphasize knowledge acquisition and the provision of simulation modules. The Windows and Daylighting Group of Lawrence Berkeley Laboratory (LBL) emphasizes the dynamic structuring of information, the intelligent linking of data, the integrity of the different issues of design and the design process, and the extensive use of images [Schuman et al 19881, these attributes incidentally define the word hypermedia. The LBL model, which uses hypermedia, seems to be the more promising direction for this type of research. However, there is still a need to establish a new model that integrates all aspects of the problem. The areas in which the present research departs from the LBL model can be listed as follows: it acknowledges the necessity of regarding the user as the center of the CAAD tool design, it develops a model that is based on one of the high level theories of human-computer interaction, and it develops a prototype tool that conforms to the model.

series ACADIA
last changed 2003/11/21 14:15

_id c9e4
authors Birmingham, William P. and Siewiorek, Daniel P.
year 1988
title Automated knowledge Acquisition for a Computer Hardware Synthesis System
source 19 p. : ill. Engineering Design Research Center, CMU, June, 1988. EDRC 18-06-88. includes bibliography
summary The MICON Synthesizer Version 1 (M1) is a rule-based system which produces a complete small computer design from a set of abstract specifications. The ability of M1 to produce designs depends on the encoding of large amounts of domain knowledge. An automated knowledge acquisition tool, CGEN, works symbiotically with M1 by gathering the knowledge required by M1. CGEN acquires knowledge about how to build and when to use various computer structures. This paper overviews the operation of CGEN by providing an example of the types of knowledge acquired and the mechanisms employed. A novel knowledge-intensive generalization scheme is presented. Generalization is a pragmatic necessity for knowledge acquisition in this domain. A series of experiments to test CGEN's capabilities are explained. A description of the architecture and knowledge-base of M1 is also provided
keywords electrical engineering, automation, knowledge acquisition, knowledge base, systems
series CADline
last changed 2003/06/02 11:58

_id 8ac0
authors Birmingham, William P., Gupta, Anurag P. and Siewiorek, Daniel P.
year 1988
title The MICON System for Computer Design
source 11 p. : ill. Pittsburgh, PA: Engineering Design Research Center, CMU, November, 1988. EDRC 18-10-89. includes bibliography
summary The MICON system is an integrated collection of programs which automatically synthesizes small computer systems from high level specifications. The system address multiple levels of design, from logical through physical, providing a rapid prototyping capability. Two programs form MICON's nucleus: a knowledge-based synthesis tool called M1; and, an automated knowledge acquisition tool named CGEN which is used to teach M1 how to design. Other tools in the MICON system are an integrated database and associated data management tools. The system is fully functional, having been used to generate working designs. This paper describes the architecture and operation of the MICON system
keywords integrated circuits, electrical engineering, design, systems, automation, integration
series CADline
last changed 2003/06/02 11:58

_id sigradi2018_1762
id sigradi2018_1762
authors de Albuquerque Montezi, Rafael; Tanoue Vizioli, Simone Helena
year 2018
title Digital morphogenesis and tectonics: an analysis of Peter Eisenman’s Aronoff Center
source SIGraDi 2018 [Proceedings of the 22nd Conference of the Iberoamerican Society of Digital Graphics - ISSN: 2318-6968] Brazil, São Carlos 7 - 9 November 2018, pp. 359-366
summary The concept of architectural tectonics relates simultaneously to pragmatic and poetic aspects of the materiality, aiming the expression of these concerns in the result of the Form. Far from only a theoretical concerning, these design decisions affect how our society employs its natural and human resources. This work takes the Aronoff Center for Design and Arts (1988-1996), by Peter Eisenman, as a case study for a graphical analysis, dealing with the consequences of a free-form morphogenesis to its construction and investigating the tectonics of the contemporary architecture.
keywords Contemporary Architecture; Digital Project; Tectonics
series SIGraDi
last changed 2019/05/20 09:14

_id 819d
authors Eiteljorg, H.
year 1988
title Computing Assisted Drafting and Design: new technologies for old problems
source Center for the study of architecture, Bryn Mawr, Pennsylvania
summary In past issues of the Newsletter, George Tressel and I have written about virtual reality and renderings. We have each discussed particular problems with the technology, and both of us mentioned how compelling computer visualizations can be. In my article ("Virtual Reality and Rendering," February, 1995, Vol. 7, no. 4), I indicated my concerns about the quality of the scholarship and the level of detail used in making renderings or virtual worlds. Mr. Tressel (in "Visualizing the Ancient World," November, 1996, Vol. IX, no. 3) wrote about the need to distinguish between real and hypothetical parts of a visualization, the need to differentiate materials, and the difficulties involved in creating the visualizations (some of which were included in the Newsletter in black-and-white and on the Web in color). I am returning to this topic now, in part because the quality of the images available to us is improving so fast and in part because it seems now that neither Mr. Tressel nor I treated all the issues raised by the use of high-quality visualizations. The quality may be illustrated by new images of the older propylon that were created by Mr. Tressel (Figs. 1 - 3); these images are significantly more realistic than the earlier ones, but they do not represent the ultimate in quality, since they were created on a personal computer.
series other
last changed 2003/04/23 13:50

_id e7a8
authors Emde, H.
year 1988
title Geometrical Fundamentals for Design and Visualization of Spatial Objects
source CAAD futures ‘87 [Conference Proceedings / ISBN 0-444-42916-6] Eindhoven (The Netherlands), 20-22 May 1987, pp. 171-178
summary Every architectural object is a 3-dimensional entity of the human environment, haptically tangible and optically visible. During the architectural process of planning every object should be designed as a body and should be visualized in pictures. Thus the parts of construction get an order in space and the steps of construction get an order in time. The ideal planning object is a simulated anticipation of the real building object, which is to be performed later on. The possibility to relate the planning object immediately to the building object relies on the fact that they both have the same "geometry" This means: both can be described in the same geometric manner. Creating and visualizing spatial objects is based on geometrical fundamentals. Theoretical knowledge and practical control of these fundamentals is essential for the faultless construction and the realistic presentation of architectural objects. Therefore they have to be taught and learned thoroughly in the course of an architectural education. Geometrical design includes the forming of object- models (geometry of body boundaries), the structuring of object-hierarchies (geometry of body combinations) and the colouring of objects. Geometrical visualization includes controlling the processes of motion, of the bodies (when moving objects) and of the center of observation (when moving subjects) as well as the representation of 3-dimensional objects in 2- dimensional pictures and sequences of pictures. All these activities of architects are instances of geometrical information processing. They can be performed with the aid of computers. As for the computer this requires suitable hardware and software, as for the architect it requires suitable knowledge and capabilities to be able to talk about and to recall the perceivable objects and processes of the design with logic abstracts (language of geometry). In contrast to logical, numerical and textual informations the geometric informations concerning spatial objects are of much higher complexity. Usually these complexes of information are absorbed, processed and transmitted by the architect in a perceptive manner. The computer support in the field of geometry assumes that the processing of perceptions of the human consciousness can be converted by the computer as a framework of logical relations. Computer aided construction and representation require both suited devices for haptical and optical communication and suitable programs in particular.
series CAAD Futures
last changed 1999/04/03 15:58

_id 20aa
authors Pekny, J. F. and Miller, D.L.
year 1988
title Results from a Parallel Branch and Bound Algorithm for the Asymmetric Traveling Salesman Problem
source [1], 8, [6] p. : tables Pittsburgh, PA: Engineering Design Research Center, CMU, 1988. EDRC-06-42-88. includes bibliography
summary Computational results are presented for a parallel branch- and-bound algorithm that optimally solves the asymmetric traveling salesman problem. Results are presented for randomly generated problems with sizes ranging from 250 to 3000 cities
keywords search, parallel processing, algorithms, branch-and-bound
series CADline
last changed 2003/06/02 11:58

_id 6c93
authors Rehg, J., Elfes, A. and Talukdar, S.N. (et al)
year 1988
title CASE : Computer-Aided Simultaneous Engineering
source 13 p. : ill
summary Pittsburgh, PA: Engineering Design Research Center, CMU, 1988. EDRC 05-22-88. This paper presents a new system for computer-aided mechanical design known as CASE, which stands for Computer- Aided Simultaneous Engineering. CASE was developed to support mechanical design at the project level, and serve as a means of integrating into the design process concerns from other parts of the lifecycle of a product. CASE is composed of an integrated framework of synthesis, analysis, and translation programs, and is designed to serve as a testbed for research in representation, problem-solving, and systems integration for computer-aided mechanical design. A prototype version of CASE has been applied to the domain of window regulator design, and is capable of automatically synthesizing regulators to meet a set of specifications and performing tolerance and stress analysis on developing designs
keywords representation, problem solving, constraints, reasoning, mechanical engineering
series CADline
last changed 2003/06/02 12:42

_id 252a
authors Reich, Yoram
year 1988
title Machine Learning for Expert Systems : Motivation and Techniques
source i-iii, 51 p. : some ill Pittsburgh, PA: Engineering Design Research Center, CMU, June, 1988. EDRC 12-27-88. includes bibliography. First generation expert systems suffer from two major problems: they are brittle and their development is a long, effortful process. Few successful expert systems for real world problems have been demonstrated. In this paper, learning, the key to intelligent behavior and expertise, is described as the answer to both expert systems deficiencies. Machine learning techniques are described, with their applicability to expert systems. A framework to organize machine learning techniques is provided. The description is followed by examples taken from the structural design domain. AI / learning / expert systems / structures / techniques. 37. Requicha, Aristides A. G. 'Mathematical Models of Rigid Solid Objects -- Production Automation Project.' Rochester, NY: College of Engineering & Applied Science, University of Rochester, November, 1977. [3], 37 p. : ill.
summary Computational models of solid objects are potentially useful in a variety of scientific and engineering fields, and in particular in the field of design and manufacturing automation for the mechanical industries. In recent years a multitude of modelling systems have been implemented both by research laboratories and commercial vendors, but little attention has been paid to the fundamental theoretical issues in geometric modelling. This has led to severe difficulties in assessing current and proposed systems, and in distinguishing essential capabilities and limitations from user conveniences and efficiency considerations. This paper seeks a sharp mathematical characterization of 'rigid solids' in a manner that is suitable for studies in design and production automation. It draws heavily on established results in modern geometry and topology. Relevant results scattered throughout the mathematical literature are placed in a coherent framework and presented in a form accessible to engineers and computer scientists. A companion paper is devoted to a discussion of representational issues in the context set forth by this paper
keywords solid modeling, geometric modeling
series CADline
last changed 1999/02/12 14:09

_id 861a
authors Sedas, Sergio W. and Talukdar, Sarosh N.
year 1987
title A Disassembly Planner for Redesign
source The Winter Annual Meeting of the American Society of Mechanical Engineers. Symposium of Intelligent and Integrated Manufacturing Analysis and Synthesis. December, 1987. Pittsburgh, PA: Engineering Design Research Center, CMU, 1988. [6] p. : ill. includes bibliography
summary This paper describes an algorithm for generating plans for disassembling given objects. The plans are produced by a set of knowledge sources acting on a set of representations for the object. Both sets are arbitrarily expandable, so programs using the approach can grow continually in capability. Our present complement of knowledge sources and representations can tackle relatively difficult problems. Three examples are included. The first requires a good bit of geometric reasoning before appropriate subassemblies can be selected. The second and third require certain movable parts to be repositioned before disassembly can be achieved
keywords algorithms, representation, synthesis, assemblies, knowledge, reasoning, mechanical engineering
series CADline
last changed 2003/06/02 11:58

_id cbef
authors Westerberg, Arthur W.
year 1988
title Synthesis in Engineering Design
source [13] p. : ill. Pittsburgh: Engineering Design Research Center, CMU, February, 1988. EDRC 06-47-88. includes bibliography
summary This paper describes the complex activities involved in engineering design. Next it reviews the chemical engineering literature on synthesis, looking particularly at heat flows in processes. It concludes by looking at some illustrative design synthesis literature in electrical, mechanical and civil engineering
keywords engineering, design process
series CADline
last changed 2003/06/02 11:58

_id 6ca4
authors Woodbury, Robert F. and Oppenheim, Irving R.
year 1988
title An Approach to Geometric Reasoning
source 20 p. : ill. Pittsburgh, PA: Engineering Design Research Center, CMU, June, 1988. EDRC-48-06-88. includes bibliography
summary An approach to the integration of geometric information in knowledge based CAD systems is described as an architecture for geometric reasoning. The general requirements for this integration arise from the need for rich geometry representations in engineering domains and the conflicting demands of current geometric modelling and knowledge based systems. Four concepts are used as a basis: (1) Classes of spatial sets, which act by inheritance as a means for incremental definition by specialization; (2) features, which denote evaluated portions of a geometric model; (3) abstractions, which provide partial representations of geometric objects; and (4) constraints through which spatial relationships are expressed. These four concepts combine in a synergistic manner to define the complete architecture. A prototype implementation of the architecture, built using object oriented programming techniques and a boundary based solid modeler, has been achieved and demonstrated. In this paper each of the concepts and their integration into a whole are described
keywords geometric modeling, knowledge base, systems, constraints, design, knowledge, architecture, methods, reasoning, integration
series CADline
last changed 2003/06/02 08:24

_id 44de
authors Woodwark, J.R.
year 1988
title Shape Models in Computer-Integrated Manufacture : A Review
source 18 p. Winchester: IBM UK Scientific Center, IBM United Kingdom Laboratories Limited, January, 1988. IBM UKSC Report 183. includes bibliography
summary Existing computer-aided manufacturing systems are based on models of shape tailored to a particular process. Computer- integrated manufacture involves many different processes, and hence requires more complete models of components or assemblies. This can be provided by solid modelling techniques extended to include extra data related to manufacture such as form features and tolerances. These developments are being applied to many manufacturing processes, from casting to assembly, but profound questions remain concerning both the structure and the use of shape models in manufacture
keywords CAM, geometric modeling, systems
series CADline
last changed 2003/06/02 11:58

_id 0220
authors Woodwark, J.R.
year 1988
title Eliminating Redundant Primitives from Set- Theoretic Solid Models by a Consideration of Constituents
source 16 p. : ill. Winchester: IBM UK Scientific Center, IBM United Kingdom Laboratories Limited, April, 1988. IBM UKSC Report 188. includes bibliography
summary Set-theoretic solid models often contain redundant primitives, which slow down rendering and other processes. They are not simple to remove, especially as there can be alternative eliminations that may not be equally desirable. There has been recent progress towards solving this problem, but existing techniques for eliminating such redundant primitives do not fully consider the possibilities and rely on repeated evaluation of parts of the object's boundary, a process that is likely to be very slow. This article proposes a technique that allows alternative eliminations to be examined, and outlines a potentially efficient, but geometrically approximate, method of implementation
keywords solid modeling, CSG, primitives, algorithms
series CADline
last changed 2003/06/02 11:58

_id ef5c
authors Danahy, J. W. and Wright, R.
year 1988
title Exploring Design through 3-Dimensional Simulations
source Landscape Architecture 78(5), pp. 64-71
summary Contributed by Susan Pietsch (
keywords 3D City Modeling, Development Control, Design Control
series other
last changed 2001/06/04 18:27

_id 3fb2
authors Itami, R. M.
year 1988
title Cellular World: Models for Dynamic Conceptions of Landscape
source Landscape Architecture 78(5), pp. 52 -57
summary Contributed by Susan Pietsch (
keywords 3D City Modeling, Development Control, Design Control
series other
last changed 2001/06/04 18:38

_id f920
authors Lozano, E. E.
year 1988
title Visual needs in urban environments and physical planning
source Environmental aesthetics: Theory, research, and applications. J. Nasar. New York, Cambridge University Press, pp. 395-421
summary Contributed by Susan Pietsch (
keywords 3D City Modeling, Development Control, Design Control
series other
last changed 2001/06/04 18:41

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 7HOMELOGIN (you are user _anon_846103 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002