CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 162

_id 5f4b
authors Coyne, R.D.
year 1988
title Logic Models of Design
source Pitman, London
summary This monograph places design in a theoretical context which applies developments in knowledge-based systems, logic programming and planning to design. It addresses two important design issues: the interpretation of designs, which concerns the discovery of implicit design attributes, a key activity in design evaluation that can be modelled by deductive inference in logic programming; and the process of generation, whereby a design description is produced which exhibits these implicit design attributes. Implicit attributes can be seen as analogous to the semantic content of natural language utterances. The work presented here is mainly concerned with design generation, and an operational model of design is investigated in which operations on processes are treated in a similar way to operations on form. It is argued that there are advantages in representing control knowledge as rules in a design system, and that logic is an effective medium for this purpose. This is demonstrated by means of programs developed in Prolog and C using the example of spatial layout in buildings. Primarily, this book is directed at those in artificial intelligence (AI) involved in logic programming, planning and expert systems. However, since AI techniques are finding widespread application in industry, the use of an architectural design example makes this work relevant to architects, designers, engineers and developers of intelligent architectural design software.
series other
email Richard.Coyne@ed.ac.uk
last changed 2003/04/23 13:14

_id ab54
authors Coyne, Richard D.
year 1988
title Logic Models of Design
source 317 p. London: Pitman, 1988. CADLINE has abstract only
summary This book constitutes both a theoretical and a technical exploration into modelling design tasks in logic. It provides a framework for describing design processes based on logic, achieved primarily by gathering together various strands evident in theories of reasoning, problem solving, design and knowledge engineering. The book demonstrates the applicability of logic programming and knowledge-based techniques to design, particularly in the area of controlling generative systems. The design task by which this is demonstrated is spatial layout, though the issues reach further than this one application
keywords reasoning, logic, design process
series CADline
email Richard.Coyne@ed.ac.uk
last changed 2003/05/17 08:13

_id e2ad
authors Coyne, Richard D.
year 1988
title The Logic of Computer-aided Design
source Design Computing. 1988. vol. 3: CADLINE has abstract only
summary The appropriateness of logic and language as the basis of models of the design process are discussed in relation to computer-aided design. A model of design systems is discussed which accounts for the role of interpretative and generative knowledge. It is argued that this knowledge serves to define design spaces. Interpretative knowledge can be used to derive implicit properties of designs, but designs can also be produced by 'abduction.' How interpretative and generative knowledge continue to produce designs is discussed. The relationship to other models is also reviewed
keywords CAD, logic, design process
series CADline
email Richard.Coyne@ed.ac.uk
last changed 2003/05/17 08:13

_id e7a8
authors Emde, H.
year 1988
title Geometrical Fundamentals for Design and Visualization of Spatial Objects
source CAAD futures ‘87 [Conference Proceedings / ISBN 0-444-42916-6] Eindhoven (The Netherlands), 20-22 May 1987, pp. 171-178
summary Every architectural object is a 3-dimensional entity of the human environment, haptically tangible and optically visible. During the architectural process of planning every object should be designed as a body and should be visualized in pictures. Thus the parts of construction get an order in space and the steps of construction get an order in time. The ideal planning object is a simulated anticipation of the real building object, which is to be performed later on. The possibility to relate the planning object immediately to the building object relies on the fact that they both have the same "geometry" This means: both can be described in the same geometric manner. Creating and visualizing spatial objects is based on geometrical fundamentals. Theoretical knowledge and practical control of these fundamentals is essential for the faultless construction and the realistic presentation of architectural objects. Therefore they have to be taught and learned thoroughly in the course of an architectural education. Geometrical design includes the forming of object- models (geometry of body boundaries), the structuring of object-hierarchies (geometry of body combinations) and the colouring of objects. Geometrical visualization includes controlling the processes of motion, of the bodies (when moving objects) and of the center of observation (when moving subjects) as well as the representation of 3-dimensional objects in 2- dimensional pictures and sequences of pictures. All these activities of architects are instances of geometrical information processing. They can be performed with the aid of computers. As for the computer this requires suitable hardware and software, as for the architect it requires suitable knowledge and capabilities to be able to talk about and to recall the perceivable objects and processes of the design with logic abstracts (language of geometry). In contrast to logical, numerical and textual informations the geometric informations concerning spatial objects are of much higher complexity. Usually these complexes of information are absorbed, processed and transmitted by the architect in a perceptive manner. The computer support in the field of geometry assumes that the processing of perceptions of the human consciousness can be converted by the computer as a framework of logical relations. Computer aided construction and representation require both suited devices for haptical and optical communication and suitable programs in particular.
series CAAD Futures
last changed 1999/04/03 15:58

_id e8f1
authors Frazer, J.
year 1988
title Plastic Modelling - The Flexible Modelling of the Logic of Structure and Spaces
source CAAD futures ‘87 [Conference Proceedings / ISBN 0-444-42916-6] Eindhoven (The Netherlands), 20-22 May 1987, pp. 199-208
summary Plastic Modelling is a technique which allows the computer model to be easily developed and manipulated. In particular it models not only building geometry but also logical relationships between elements, components, structure and spaces. It is the author's contention that this approach to solid modelling is particularly suitable for the interactive development of architectural design ideas.
series CAAD Futures
email sdfrazer@polyu.edu.hk
last changed 2003/05/16 18:58

_id 404e
authors Oksala , T.
year 1988
title Logical Models for Rule-based CAAD
source CAAD futures ‘87 [Conference Proceedings / ISBN 0-444-42916-6] Eindhoven (The Netherlands), 20-22 May 1987, pp. 107-116
summary The aim of this paper is to present the basic results of a theoretic approach to represent architectural individual forms in CAD systems. From the point of view of design methodology and problem solving these descriptions might be conceived' as parts of possible environments satisfying the laws of some design theory in logical sense. This paper describes results in a series of logical studies towards rule and knowledge based systems for design automation. The effective use of programming languages and computers as design aids in architecture presupposes certain capabilities to articulate built environment logically. The use of graphic languages in the description of environmental items e.g. buildings might be theoretically mastered by formal production systems including linguistic, geometric, and spatio-material generation. The combination of the power of formal mechanisms and logical individual calculus offers suitable framework to generate arbitrary e.g. free spatial compositions as types or unique solutions. In this frame it is natural to represent in a coherent way very complex hierarchical parsing of buildings in explicit form as needed in computer implementations. In order to simulate real design work the individual configurations of possible built forms should be designed to satisfy known rules. In the preliminary stage partial solutions to design problems may be discussed in mathematical terms using frameworks like lattices, graphs, or group theoretical considerations of structural, functional, and visual organization of buildings. The capability to produce mathematically sophisticated geometric structures allows us to generalize the approach further. The theoretical design knowhow in architecture can be partly translated in to some logic and represented in a knowledge base. These rules are used as selection criteria for geometric design candidates in the sense of logical model theory and mathematical optimization. The economy of the system can be developed by using suitable conduct mechanisms familiar e.g. from logic programming. The semantics of logic offers a frame to consider computer assisted and formal generation in design. A number of semantic and pragmatic problems, however, remain to be solved. In any case conceptual analyses based on logic are applicable in order to rationally reconstruct architectural goals contributing to the quality of environmental design, which should be the main goal in the development of design systems in near future.
series CAAD Futures
last changed 1999/04/03 15:58

_id c7f4
authors Bancroft, Pamela J. (ed.)
year 1988
title Computing in Design Education [ACADIA Conference Proceedings]
source ACADIA ‘88 Conference Proceedings /Ann Arbor (Michigan / USA) 28-30 October 1988, 311 p.
summary Progress is being made towards integrating computing into architectural design. This progress is not being made in a coordinated and systematic manner, which is actually a positive factor. Architects will never be scientists or engineers, who hold the distinguishing characteristic of being masters of the scientific method. We have never been so incumbered, although we certainly have given it our best effort.

Architects are creative problem solvers, primarily driven by intuition, while coming from a sense of the past and the logic of the present. Our initial attempts at integrating computing into the studio, as evidenced by this collection of papers, is very diverse, based on differing pedagogical assumptions, and the achieving of significantly different results. This would appear to be evidence of a revolutionary approach to the problem rather than a scientific evolutionary approach. Terrific! This is when we as architects are at our best. Although we reach a great number of emphatically dead ends, the successes and discoveries achieved along the way are significant.

The diversity and quality of papers submitted suggest that we are indeed pursuing the task of integration in our typical, individual, intuitive, logical manner. I commend all of the authors who submitted proposals and thank them for expanding the envelope of integration into their personal exploration.

series ACADIA
last changed 1999/01/01 18:21

_id caadria2011_061
id caadria2011_061
authors Celani, Gabriela; José P. Duarte and Carlos V. Vaz
year 2011
title The gardens revisited: The link between technology, meaning and logic?
source Proceedings of the 16th International Conference on Computer Aided Architectural Design Research in Asia / The University of Newcastle, Australia 27-29 April 2011, pp. 643-652
summary The objective of this paper is to compare the computational concepts present in three books published by Mitchell between 1987 and 1990: The art of computer-graphics programming (1987), which has Robin Liggett and Thomas Kvan as co-authors, The logic of architecture (1990), probably his most influential work, and The poetics of gardens (1988), which has Charles Moore and William Turnbull as coauthors. By looking at the concepts that are presented in the three books and establishing a comparison between them, we expect to show that The poetics of Gardens should not be seen as a detour from Mitchell´s line of research, but rather as a key piece for understanding the relationship between technology, meaning and logic in his very coherent body of work.
keywords Computational design concepts; technology; meaning; logic
series CAADRIA
email celani@fec.unicamp.br
last changed 2012/05/30 19:29

_id c057
authors Ganter, John H.
year 1988
title Interactive Graphics : Linking the Human to the Model
source GIS/LIS'88 Proceeding accessing the world (3rd. : 1988 : San Antonio). December, 1988. Vol. 1: pp. 230-239 : ill. includes bibliography
summary Discovery and innovation, which have traditionally involved thinking visually and producing images, increasingly benefit from labor-saving devices like GIS and CAD. As new visualization technologies are implemented, it is particularly important to understand the human faculties which use pictures as tools in thinking. Science and engineering define problems, explain processes, and design solutions through observation, imagination and logic. This conceptual thought relies on a cognitive `database' of sensed verbal and non-verbal information, which is retained, managed, and updated within the short and long-term human memories. Research suggests that the individual must actively manipulate a phenomenon under study and its representations to enhance and maintain this database, and to produce abstractions and generalizations. Graphics are particularly important in this process of discovering correlations, contradictions and connections, and subsequent communication to others. Graphics offer high information density, simultaneity, variable detail and the capacity for showing multivariate relations. A `gestalt' property leads to the discovery of new relationships since the graphic whole always exceeds the sum of its parts. A cycle occurs in which the individual interacts with the phenomenon and produces explicit knowledge in the form of graphics and text, testing and refining each against knowledge and abstractions held in the mind
keywords information, computer graphics, perception, user interface, visualization, cognition, abstraction
series CADline
last changed 2003/06/02 11:58

_id 0350
authors Norman, Richard B.
year 1988
title The Role of Color in Architectural Pedagogy Computation as a Creative Tool
source Computing in Design Education [ACADIA Conference Proceedings] Ann Arbor (Michigan / USA) 28-30 October 1988, pp. 217-223
summary From among the possible ways of introducing graphic computing in the design studio, it is customary to develop an argument from point, to line, to shape and finally to colon The logic of this process is undeniable as technology and perhaps as history, but it should be questioned as pedagogy. A designer, tuned to the visual focus of the studio and searching for creative self-expression is not overly stimulated by drawing lines, at first laboriously, in imitation of what he can do by hand.

Using color is among the more difficult of traditional studio chores -- it is not difficult on a computer. The manipulation of color can be a simple task if one is given reasonable software and a good graphic computer. Once introduced to students, the techniques for coloring elements on a computer find acceptance as a design tool. Methods can be quickly found for modifying the perception of space and form through the use of colon

Modern architecture is rooted in the study of color as a generator of form. This idea permeated the teachings of its founders. Yet modernist concern for color has over time evolved into a pedagogy of space and form at the exclusion of color, so much so that the modern movement today stands accused by its detractors as being formed in many shades of grey.

Modern architecture is not grey! This paper will illustrate how, using the modern graphic computer, color may be introduced to the studio and discovered as an element of design and as the substance of architectural form giving.

series ACADIA
email rnorman@CLEMSON.EDU
last changed 2003/05/16 17:23

_id 11cb
id 11cb
authors Oguzhan Özcan
year 2004
title MATHEMATICS AND DESIGN EDUCATION
source Proceedings of the Fourth International Conference of Mathematics & Design, Special Edition of the Journal of Mathematics & Design, Volume 4, No.1, pp. 199-203.
summary Many people believe that mathematical thought is an essential element of creativity. The origin of this idea in art dates back to Plato. Asserting that aesthetics is based on logical and mathematical rules, Plato had noticed that geometrical forms were “forms of beauty” in his late years. Unlike his contemporaries, he had stressed that the use of geometrical forms such as lines, circles, planes, cubes in a composition would aid to form an aesthetics. The rational forms of Plato and the rules of geometry have formed the basis of antique Greek art, sculpture and architecture and have influenced art and design throughout history in varying degrees. This emphasis on geometry has continued in modern design, reflected prominently by Kandinsky’s geometric classifications .

Mathematics and especially geometry have found increasing application in the computer-based design environment of our day. The computer has become the central tool in the modern design environment, replacing the brush, the paints, the pens and pencils of the artist. However, if the artist does not master the internal working of this new tool thoroughly, he can neither develop nor express his creativity. If the designer merely learns how to use a computer-based tool, he risks producing designs that appear to be created by a computer. From this perspective, many design schools have included computer courses, which teach not only the use of application programs but also programming to modify and create computer-based tools.

In the current academic educational structure, different techniques are used to show the interrelationship of design and programming to students. One of the best examples in this area is an application program that attempts to teach the programming logic to design students in a simple way. One of the earliest examples of such programs is the Topdown Programming Shell developed by Mitchell, Liggett and Tan in 1988 . The Topdown system is an educational CAD tool for architectural applications, where students program in Pascal to create architectural objects. Different examples of such educational programs have appeared since then. A recent fine example of these is the book and program called “Design by Number” by John Maeda . In that book, students are led to learn programming by coding in a simple programming language to create various graphical primitives.

However, visual programming is based largely on geometry and one cannot master the use of computer-based tools without a through understanding of the mathematical principles involved. Therefore, in a model for design education, computer-based application and creativity classes should be supported by "mathematics for design" courses. The definition of such a course and its application in the multimedia design program is the subject of this article.

series other
type normal paper
email oozcan@yildiz.edu.tr
last changed 2005/04/07 13:36

_id 696c
authors Beheshti, M. and Monroy, M.
year 1988
title Requirements for Developing an Information System for Architecture
source CAAD futures ‘87 [Conference Proceedings / ISBN 0-444-42916-6] Eindhoven (The Netherlands), 20-22 May 1987, pp. 149-170
summary This paper discusses possibilities of developing new tools for architectural design. It argues that architects should meet the challenge of information technology and computer-based design techniques. One such attempt has been the first phase of the development of an architectural design information system (ADIS), also an architectural design decision support system. The system should benefit from the developments of the artificial intelligence to enable the architect to have access to information required to carry out design work. In other words: the system functions as a huge on-line electronic library of architecture, containing up-to-date architectural design information, literature, documents, etc. At the same time, the system offers necessary design aids such as computer programs for design process, drawing programs, evaluation programs, cost calculation programs, etc. The system also provides data communication between the architect and members of the design coalition team. This is found to be of vital importance in the architectural design process, because it can enable the architect to fit in changes, brought about in the project by different parties. Furthermore, they will be able, to oversee promptly the consequences of changes or decisions in a comprehensive manner. The system will offer advantages over the more commonly applied microcomputer based CAAD and IGDM (integrated graphics database management) systems, or even larger systems available to an architect. Computer programs as well as hardware change rapidly and become obsolete. Therefore, unrelenting investment pressure to up-date both software and hardware exists. The financial burden of this is heavy, in particular for smaller architectural practices (for instance an architect working for himself or herself and usually with few or no permanent staff). ADIS, as an on-line architectural design aid, is constantly up-dated by its own organisation. This task will be co-ordinated by the ADIS data- base administrator (DBA). The processing possibilities of the system are faster, therefore more complex processing tasks can be handled. Complicated large graphic data files, can be easily retrieved and manipulated by ADIS, a large system. In addition, the cost of an on-line system will be much less than any other system. The system is based on one model of the architectural design process, but will eventually contain a variety of design models, as it develops. The development of the system will be an evolutionary process, making use of its users' feed-back system. ADIS is seen as a step towards full automation of architectural design practices. Apart from being an architectural design support system, ADIS will assist the architect in his/her administrative and organisational activities.
series CAAD Futures
last changed 2003/11/21 14:16

_id c57b
authors Bier, Eric A.
year 1988
title Snap-Dragging. Interactive Geometric design in Two and Three Dimensions
source University of California, Berkeley
summary Graphic artists, mechanical designers, architects, animators, authors of technical papers and others create geometric designs (illustrations and solid models) as a major part of their daily efforts. Some part of this shape construction must be done with precision. For instance, certain line segments should be horizontal, parallel or congruent. In recent years, interactive computer programs have been used to speed up the production of precise geometric designs. These programs take advantage of high-speed graphics, equation solving, and computer input peripherals to reduce the time needed to describe point positions to the machine. Previous techniques include rounding the cursor to points on a rectangular grid, solving networks of constraints, and supporting step-by-step drafting-style constructions. Snap-dragging is a modification of the drafting approach that takes advantage of powerful workstations to reduce the time needed to make precise illustrations. Using a single gravity mapping, a cursor can be snapped to either points, lines or surface. The gravity algorithm achieves good performance by computing intersection points on the fly. To aid precise construction, a set of lines, circles, planes, and spheres, called alignment objects, are constructed by the system at a set of slopes, angles, and distances specified by the user. These alignments objects are constructed at each vertex or edge that the user has declared to be hot (of interest). Vertices and edges can also be made hot by the system through the action of an automatic hotness rule. When snap-dragging is used, shapes can often be constructed using a few more keystrokes than would be needed to sketch them freehand. Objects can be edited at arbitrary orientations and sizes. The number of primitive operations is small, making it possible to provide keyboard combinations for quickly activating most of these operations. The user interface works nearly identically in two or three dimensions. In three dimensions, snap-dragging works with a two-dimensional pointing device in a single perspective view.  
series thesis:PhD
email bier@parc.com
last changed 2003/02/12 21:37

_id 88cb
authors Gero, John S. and Oksala, Tarkko (editors)
year 1988
title Knowledge-Based Systems in Architecture
source TIPS'88 - Knowledge Based Design in Architecture, Acta Polytechnica Scandinavica (1988 : Helsinki, Finland). 143 p. 1989
summary The technology of knowledge-based systems can be found in texts on artificial intelligence. There is very little published so far on knowledge-based systems in architecture. To this end an international conference -- TIPS' 88: Knowledge-Based Design in Architecture -- was organized for August 1988 in Finland. Thirteen papers from that conference have been selected and edited for this monograph. They are grouped under five parts: Introduction; Schemas and Models; Processes and Knowledge; Modeling Buildings; and Creativity and Knowledge-Based Systems
keywords knowledge base, architecture, representation, expert systems,building, creativity
series CADline
email john@arch.usyd.edu.au
last changed 2003/06/02 11:58

_id 3fb2
authors Itami, R. M.
year 1988
title Cellular World: Models for Dynamic Conceptions of Landscape
source Landscape Architecture 78(5), pp. 52 -57
summary Contributed by Susan Pietsch (spietsch@arch.adelaide.edu.au)
keywords 3D City Modeling, Development Control, Design Control
series other
last changed 2001/06/04 18:38

_id f65d
authors Kalisperis, L.N.
year 1988
title A Conceptual Framework for Computing in Architectural Design
source Pennsylvania State University
summary A brief historical overview of architectural design reveals that there has been a slow development in the conceptualization of the scope of architectural design. Advancing our understanding of the architectural design process reveals new directions for computing in architectural design. This study proposes a conceptual framework for an integrated computing environment. Design disciplines have embarked on a rigorous search for theoretical perspectives and methods that encompass a comprehensive view of architecture. Architectural design has been seen as a sequential process similar to that of industrial design. Attempts to formalize this process based on industrial design methods solved only a fraction of the overall integration problem. The resultant models are inadequate to deal with the complexity of architectural design. Emerging social problem-solving paradigms seek to construct a cognitive psychology of problem solving and have a direct relevance to architectural design. These problem-solving activities include structured, semi-structured, and ill-defined problems, which are included to varying degrees in each problem situation across a continuum of difficulty. Problem solving in architectural design involves the determination of certain objectives and also whether or not it is possible to accomplish them. Developments in computing in architecture have paralleled developments in architectural methodologies. The application of computing in architectural design has predominantly focused only on sequential process, optimum solutions, and quantifiable tasks of the design process. Qualitative, generative, tasks of architectural design were dealt with through the introduction of paradigms from linguistics and knowledge-based systems borrowed from engineering applications. Although the application of such paradigms resulted in some success, this reductionist approach to computing in architecture fragmented its integration into the design process. What is required, therefore, is a unified approach to computing in architecture based on a holistic view of the architectural design process. The model proposed in this study provides such a conceptual framework. This model shifts the focus from product to process and views the design problem as a goal-oriented problem-solving activity that allows a design team to identify strategies and methodologies in the quest for design solutions.  
series thesis:PhD
email lnk@psu.edu
last changed 2003/02/12 21:37

_id c7e9
authors Maver, T.W.
year 2002
title Predicting the Past, Remembering the Future
source SIGraDi 2002 - [Proceedings of the 6th Iberoamerican Congress of Digital Graphics] Caracas (Venezuela) 27-29 november 2002, pp. 2-3
summary Charlas Magistrales 2There never has been such an exciting moment in time in the extraordinary 30 year history of our subject area, as NOW,when the philosophical theoretical and practical issues of virtuality are taking centre stage.The PastThere have, of course, been other defining moments during these exciting 30 years:• the first algorithms for generating building layouts (circa 1965).• the first use of Computer graphics for building appraisal (circa 1966).• the first integrated package for building performance appraisal (circa 1972).• the first computer generated perspective drawings (circa 1973).• the first robust drafting systems (circa 1975).• the first dynamic energy models (circa 1982).• the first photorealistic colour imaging (circa 1986).• the first animations (circa 1988)• the first multimedia systems (circa 1995), and• the first convincing demonstrations of virtual reality (circa 1996).Whereas the CAAD community has been hugely inventive in the development of ICT applications to building design, it hasbeen woefully remiss in its attempts to evaluate the contribution of those developments to the quality of the built environmentor to the efficiency of the design process. In the absence of any real evidence, one can only conjecture regarding the realbenefits which fall, it is suggested, under the following headings:• Verisimilitude: The extraordinary quality of still and animated images of the formal qualities of the interiors and exteriorsof individual buildings and of whole neighborhoods must surely give great comfort to practitioners and their clients thatwhat is intended, formally, is what will be delivered, i.e. WYSIWYG - what you see is what you get.• Sustainability: The power of «first-principle» models of the dynamic energetic behaviour of buildings in response tochanging diurnal and seasonal conditions has the potential to save millions of dollars and dramatically to reduce thedamaging environmental pollution created by badly designed and managed buildings.• Productivity: CAD is now a multi-billion dollar business which offers design decision support systems which operate,effectively, across continents, time-zones, professions and companies.• Communication: Multi-media technology - cheap to deliver but high in value - is changing the way in which we canexplain and understand the past and, envisage and anticipate the future; virtual past and virtual future!MacromyopiaThe late John Lansdown offered the view, in his wonderfully prophetic way, that ...”the future will be just like the past, onlymore so...”So what can we expect the extraordinary trajectory of our subject area to be?To have any chance of being accurate we have to have an understanding of the phenomenon of macromyopia: thephenomenon exhibitted by society of greatly exaggerating the immediate short-term impact of new technologies (particularlythe information technologies) but, more importantly, seriously underestimating their sustained long-term impacts - socially,economically and intellectually . Examples of flawed predictions regarding the the future application of information technologiesinclude:• The British Government in 1880 declined to support the idea of a national telephonic system, backed by the argumentthat there were sufficient small boys in the countryside to run with messages.• Alexander Bell was modest enough to say that: «I am not boasting or exaggerating but I believe, one day, there will bea telephone in every American city».• Tom Watson, in 1943 said: «I think there is a world market for about 5 computers».• In 1977, Ken Olssop of Digital said: «There is no reason for any individuals to have a computer in their home».The FutureJust as the ascent of woman/man-kind can be attributed to her/his capacity to discover amplifiers of the modest humancapability, so we shall discover how best to exploit our most important amplifier - that of the intellect. The more we know themore we can figure; the more we can figure the more we understand; the more we understand the more we can appraise;the more we can appraise the more we can decide; the more we can decide the more we can act; the more we can act themore we can shape; and the more we can shape, the better the chance that we can leave for future generations a trulysustainable built environment which is fit-for-purpose, cost-beneficial, environmentally friendly and culturally significactCentral to this aspiration will be our understanding of the relationship between real and virtual worlds and how to moveeffortlessly between them. We need to be able to design, from within the virtual world, environments which may be real ormay remain virtual or, perhaps, be part real and part virtual.What is certain is that the next 30 years will be every bit as exciting and challenging as the first 30 years.
series SIGRADI
email t.w.maver@strath.ac.uk
last changed 2016/03/10 08:55

_id ec36
authors Meurant, Robert C.
year 1988
title Some Metaphysical Considerations Raised by the Computer-Generated Electronic Environment
source Computing in Design Education [ACADIA Conference Proceedings] Ann Arbor (Michigan / USA) 28-30 October 1988, pp. 59-70
summary The effects of the computer on the designer are profound, and affect design methodology and habitation. The computer-aided designer experiences within the electronic environment a freedom from certain important constraints of real-world modelling of physical reality. Electronic configurations are not bound by the constructional, material, or structural constraints operating in the physical world. This freedom is liberating, in that the imagination is given a powerful tool with which to develop external representations of ideal environments. But there is also the potential of destructive tendencies. Is the increasing sophistication of external tools of the imagination at the expense of the ability of the individual to master the internal imagination - are we externalizing at the price of inner vision? There is also the possibility of greater alienation from the physical world. We loose the tactile sensitivity, and the spatial and structural intuition with which we draw and make physical models. These are essential parts of the design of the physical environment.

We are left on the horns of a dilemma. The rapid response and exciting images of the computergenerated video environment suggest we are entering an era when architecture itself becomes electronic. The physical built-form recedes in importance, and may even become redundant. But we must also ask: Are we entering a post-computer age? Will we realize the potential profundity of our innate human biocomputers - to the point where we renounce the hard technology of the material for the soft technology of consciousness?

series ACADIA
last changed 1999/01/01 18:24

_id 8403
authors Mitchell, William J., Liggett, Robin S. and Tan, Milton
year 1988
title The Topdown System and its use in Teaching - An Exploration of Structured, Knowledge-Based Design
source Computing in Design Education [ACADIA Conference Proceedings] Ann Arbor (Michigan / USA) 28-30 October 1988, pp. 251-262
summary The Topdown System is a shell for use in developing simple (but we believe non-trivial) knowledge-based CAD systems. It provides a data structure, graphics capabilities, a sophisticated user interface, and programming tools for rapid construction of knowledge bases. Implementation is for Macintosh, Macintosh II, IBM PC/AT, PS12, and Sun workstations.

The basic idea is that of top-down design - beginning with a very abstract representation, and elaborating that, in step-by-step fashion, into a complete and detailed representation. The basic operations are real-time parametric variation of designs (using the mouse and slide bar) and substitution of objects. Essentially, then, a knowledge-base in Topdown implements a kind of parametric shape grammar.

The main applications of Topdown are in introductory teaching of CAD, and (since it provides a very quick and easy way for a user to develop detailed geometric models) to provide a uniform front-end for a variety of different applications. The shell, and some example knowledge-bases, are publicly available.

This paper discusses the principles of the Topdown Shell, the implementation of knowledge bases within it, and a variety of practical design applications.

series ACADIA
email wjm@MIT.EDU
last changed 2003/05/16 17:23

_id e304
authors Porada, M.
year 1988
title Digital Image: A Bridge Towards Mental Images?
source CAAD futures ‘87 [Conference Proceedings / ISBN 0-444-42916-6] Eindhoven (The Netherlands), 20-22 May 1987, pp. 209-216
summary How we see things depends on our education and our cultural pre-suppositions. This does not allow to convey some logical form, but nevertheless makes possible a more global and less formalized understanding of the objects, their environment and their physical proprieties. In architecture, the digital image acts according to two directions: (-) representation: the fine images are a means of communication between the different parties implementing building projects. (-) modelization: in addition to its iconic qualities the layers of different models simulate the most different aspects of the ,image and the environment characteristics. // At this level our vision is directly concerned with the design of the studied object; it acts both in the design process and in the expression of our conceptual images. How does modelization work? Infographical representation deals with a more or less schematic and conceptualized world the reading of which is more typified than particularized. It deals with a schematization nearly "ideographical" of the mental image thus is produced "synthetism", a neologism similar to such expressions as realism or abstractionism.
series CAAD Futures
last changed 1999/04/03 15:58

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 8HOMELOGIN (you are user _anon_395391 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002