CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 254

_id c12b
authors Sakr, Yasser H. and Johnson, Robert E.
year 1991
title Computer-Aided Architectural Design Strategies: One Size Does Not Fit All
source Reality and Virtual Reality [ACADIA Conference Proceedings / ISBN 1-880250-00-4] Los Angeles (California - USA) October 1991, pp. 15-31
summary The practice of architecture is in the midst of significant change and an increasingly uncertain future. Socio-economic factors external to the profession are forcing firms to develop new strategies for delivering design services. Overlaying these external changes is the uncertainty resulting from the inevitable introduction of information technology, which is only beginning to have an impact on the profession. Some advocates see the emergence of a new form of design firm -the computerized design firm - as an intelligent organization structured around electronic work groups with powerful computation and communications tools (Catalano 1990). On the other hand, many practitioners still see CADD as an expensive technology whose primary result leads to an increase in overhead costs. But some practitioners and researchers (Coyne, 1991) recognize both the potential and, problems that computer-aided design presents to the profession. This research presents a framework for understanding how changing information technology might be appropriately integrated into the design firm. It argues that design is an increasingly diverse enterprise, and that this diversity must be understood in order to effectively integrate information technology. The study is divided into three sections. The first section develops an overview of major social, economic, and structural changes within the profession. The second section discusses two alternative approaches that have been utilized to integrate information technology into firms. The third part presents a framework for understanding how information technology may have an impact on strategies for structuring and organizing architectural firms.
series ACADIA
last changed 1999/10/10 12:27

_id 3824
authors Mitchell, William J.
year 1989
title A New Agenda for Computer-Aided Architectural Design
source New Ideas and Directions for the 1990’s [ACADIA Conference Proceedings] Gainsville (Florida - USA) 27-29 October 1989, pp. 27-43
summary The essential theoretical foundations for today's practical computer-aided design systems were laid more than two decades ago. They have served us well, but they are now sorely in need of revision. This paper suggests some directions that this revision might take. In particular, I focus on the roles of ambiguity and discontinuity in shape interpretation, instability in rules for carrying out shape computations, and nonmonotonicity in critical reasoning. I suggest that the challenge before us is to build a new generation of CAD systems that respond in sophisticated ways to these issues.
series ACADIA
email wjm@MIT.EDU
last changed 2003/05/16 17:23

_id cdd3
authors Mitchell, William J.
year 1990
title A New Agenda For Computer-Aided Design
source The Electronic Design Studio: Architectural Knowledge and Media in the Computer Era [CAAD Futures ‘89 Conference Proceedings / ISBN 0-262-13254-0] Cambridge (Massachusetts / USA), 1989, pp. 1-16
summary Design is the computation of shape information that is needed to guide fabrication or construction of an artifact. This information normally specifies artifact topology (connections of vertices, edges, surfaces, and closed volumes), dimensions, angles, and tolerances on dimensions and angles. There may also be associations of symbols with subshapes to specify material and other such properties. The process of design takes different forms in different contexts, but the most usual computational operations are transformations (unary operations) and combinations (binary operations) of shapes in a two-dimensional drawing or a three-dimensional geometric model. An initial vocabulary of shapes, together with a repertoire of shape transformation and combination operators., establishes the shape algebra within which the computation takes place. The computation terminates successfully when it can be shown that certain predicates are satisfied by a shape produced by recursively applying the transformation and combination operators to the initial vocabulary. These predicates are usually stated in symbolic (verbal or numerical) form. Thus determination of whether a predicate is satisfied usually involves producing a numerical or verbal interpretation of a drawing, then deriving inferences from this interpretation by applying rules or formulae.
series CAAD Futures
email wjm@MIT.EDU
last changed 2003/05/16 18:58

_id caadria2006_047
id caadria2006_047
authors SHAI YESHAYAHU, A.; B. MARIA VERA
year 2006
title CUT, COPY, PASTE SOCIETY
source CAADRIA 2006 [Proceedings of the 11th International Conference on Computer Aided Architectural Design Research in Asia] Kumamoto (Japan) March 30th - April 2nd 2006, 47-52
summary You and I were not born in the 1990’s thus our experience about the true modalities of circulation and communication that have substantially transformed the methods that form and inform us today, are not really “pure”. Why? Because we know how slow time was before the communication boom of this last decade and because some of us still believe that we must read to be inform and thus, visit a bookstore, library or friends house and get peeks inside a subject of matter. So experiencing life as we bypass the book _ that’s a story of a brand new era! Taking note of the enormous changes this era brings, is fundamental to our current pedagogic undertakings. We seek data about the differences that lie in the way individuals, which never knew a world before or between analogue and digital zones, process information. It signals a dramatic shift in cognitive realms that is deeply imbedded in our emerging socio-economic spheres. So, you say “hypothesizing that economic, technologic, and cultural fluxes fabricate new means to learn and think, is not a fresh idea”_ True. But, it led us to ask one fundamental question _What are the upcoming learning habits employed by the “post digital” society? We noted that the post digital generation is an avid cut, copy, paste society that is able to extract information from infinite resources and mix, remix in diversified modes, through time and in real-time. We think these abilities are strengths, which will permit students to multitask yet they strongly differ from the academic agendas that are concerned with meditative processes and qualitative interdisciplinary task. As aspiring academics interested in the reconfiguration of current pedagogic formats we seek a creative intervention for future design generations, one that can benefit both the upheavals of the cultural world and the integrity of the academic setting where a pedagogy that links extended fields of knowledge with shifting cognitive habits can emerge. In this arena where cognition plays an important role, our goals are challenging and difficult, especially in the beginning years when the foundations set forward leaves lasting impressions. Thus, letting go of familiar grounds and tuning to continual alterations of the immediate surroundings enables us to seek means that facilitate important readings for our current learning/teaching processes. Demystifying changes and embracing differences as design potentials for new interventions are basic programmatic elements that permit us to incorporate a rigorous research agenda in the design exercises. Our presentation will project the current state of our teaching modality and provide examples of current studio work. It will demonstrate how everyday rituals, journeys and research observations, are documented by a society that heralds a new academic setting.
series CAADRIA
email shaiy@siu.edu
last changed 2007/07/23 05:08

_id 235d
authors Catalano, Fernando
year 1990
title The Computerized Design Firm
source The Electronic Design Studio: Architectural Knowledge and Media in the Computer Era [CAAD Futures ‘89 Conference Proceedings / ISBN 0-262-13254-0] Cambridge (Massachusetts / USA), 1989, pp. 317-332
summary This paper is not just about the future of computerized design practice. It is about what to do today in contemplation of tomorrow-the issues of computercentered practice and the courses of action open to us can be discerned by the careful observer. The realities of computerized design practice are different from the issues on which design education still fixes its attention. To educators, the present paper recommends further clinical research on computerized design firms and suggests that case studies on the matter be developed and utilized as teaching material. Research conducted by the author of this paper indicates that a new form of design firm is emerging-the computerized design firm-totally supported and augmented by the new information technology. The present paper proceeds by introducing an abridged case study of an actual totally electronic, computerized design practice. Then, the paper concentrates on modelling the computerized design firm as an intelligent system, indicating non-trivial changes in its structure and strategy brought about by the introduction of the new information technology into its operations - among other considerations, different strategies and diverse conceptions of management and workgroup roles are highlighted. In particular, this paper points out that these structural and strategic changes reflect back on the technology of information with pressures to redirect present emphasis on the individual designer, working alone in an isolated workstation, to a more realistic conception of the designer as a member of an electronic workgroup. Finally, the paper underlines that this non-trivial conception demands that new hardware and software be developed to meet the needs of the electronic workgroup - which raises issues of human-machine interface. Further, it raises the key issues of how to represent and expose knowledge to users in intelligent information - sharing systems, designed to include not only good user interfaces for supporting problem-solving activities of individuals, but also good organizational interfaces for supporting the problem-solving activities of groups. The paper closes by charting promising directions for further research and with a few remarks about the computerized design firm's (near) future.
series CAAD Futures
last changed 1999/04/03 15:58

_id e5d0
authors Lowe, John P.
year 1994
title Computer-Aided-Design in the Studio Setting: A Paradigm Shift in Architectural Education
source The Virtual Studio [Proceedings of the 12th European Conference on Education in Computer Aided Architectural Design / ISBN 0-9523687-0-6] Glasgow (Scotland) 7-10 September 1994, p. 230
summary The introduction of the personal computer in 1982 set forth a revolution that will continue to transform the profession of Architecture. Most architectural practices in America have embraced this revolution realizing the potentials of the computer. However, education seems to have been slower accepting the potentials and challenges of computers. Computer technology will change the design studio setting and therefore the fundamental way architects are educated. The Department of Architecture at Kansas State University has made a commitment to move toward a computer based design studio. In the fall of 1990, discussions began among the faculty to search for the placement of a computer studio within the five year program. Curriculum, staffing, and funding were issues that had to be overcome to make this commitment work. The strategy that was adopted involved placing the computer studio at the fourth year level in phase one. Phase two will progress as more staff are trained on the computer and course work was adapted to accommodate other year levels for a computer based design studios. Funding was a major obstacle. The decision was made to move from a position of being the primary suppliers of computing technology to one of support for student purchased computers. This strategy alleviated the department from maintaining and upgrading the technology. There was great enthusiasm and support from the faculty as a whole for the use of computers in the studio setting. However, the pedagogical impacts of such a change are just beginning to be realized.

series eCAADe
last changed 1998/09/14 08:18

_id 4e31
authors Norman, Richard B.
year 1990
title Electronic Color : The Art of Color Applied to Graphic Computing
source xiv, 186 p. : ill. (some col.) New York: Van Nostrand Reinhold, 1990. includes bibliography
summary This book offers artists an introduction to a new technology for the communication of visual ideas, and it offers scientists an introduction to principles of art that have existed forever, but made simpler to communicate because of the new technology. The 9 chapters of the book cover such topics as: The language of color (tools and teaching, the elements of design, how color speaks, electronic color as teacher); A theory of contrasts (the Bauhaus, the seven contrasts of Johannes Itten, design applications); Color models (the need for order, traditional concepts of color organization, computer color selection, inventing a color space); Electronics as a source of color (color images, the color monitor, additive and subtractive color, the automation of graphics, reproduction of the computer image); The dynamics of color (dynamics in painting, impressionism, the Albers color descriptions, color dynamics today, dynamic architectural images); Illusions of space and form (transparency, perception of space, definition of form); Color psychology (the meaning of color, the colors, color transposition, applied psychology); Color in the design process (the discovery of site, the design of buildings, the color of cities); The representation of form (automation of the construction process, intuition in drawing, intuition in design, form and color)
keywords computer graphics, color, education
series CADline
last changed 2003/06/02 11:58

_id avocaad_2001_02
id avocaad_2001_02
authors Cheng-Yuan Lin, Yu-Tung Liu
year 2001
title A digital Procedure of Building Construction: A practical project
source AVOCAAD - ADDED VALUE OF COMPUTER AIDED ARCHITECTURAL DESIGN, Nys Koenraad, Provoost Tom, Verbeke Johan, Verleye Johan (Eds.), (2001) Hogeschool voor Wetenschap en Kunst - Departement Architectuur Sint-Lucas, Campus Brussel, ISBN 80-76101-05-1
summary In earlier times in which computers have not yet been developed well, there has been some researches regarding representation using conventional media (Gombrich, 1960; Arnheim, 1970). For ancient architects, the design process was described abstractly by text (Hewitt, 1985; Cable, 1983); the process evolved from unselfconscious to conscious ways (Alexander, 1964). Till the appearance of 2D drawings, these drawings could only express abstract visual thinking and visually conceptualized vocabulary (Goldschmidt, 1999). Then with the massive use of physical models in the Renaissance, the form and space of architecture was given better precision (Millon, 1994). Researches continued their attempts to identify the nature of different design tools (Eastman and Fereshe, 1994). Simon (1981) figured out that human increasingly relies on other specialists, computational agents, and materials referred to augment their cognitive abilities. This discourse was verified by recent research on conception of design and the expression using digital technologies (McCullough, 1996; Perez-Gomez and Pelletier, 1997). While other design tools did not change as much as representation (Panofsky, 1991; Koch, 1997), the involvement of computers in conventional architecture design arouses a new design thinking of digital architecture (Liu, 1996; Krawczyk, 1997; Murray, 1997; Wertheim, 1999). The notion of the link between ideas and media is emphasized throughout various fields, such as architectural education (Radford, 2000), Internet, and restoration of historical architecture (Potier et al., 2000). Information technology is also an important tool for civil engineering projects (Choi and Ibbs, 1989). Compared with conventional design media, computers avoid some errors in the process (Zaera, 1997). However, most of the application of computers to construction is restricted to simulations in building process (Halpin, 1990). It is worth studying how to employ computer technology meaningfully to bring significant changes to concept stage during the process of building construction (Madazo, 2000; Dave, 2000) and communication (Haymaker, 2000).In architectural design, concept design was achieved through drawings and models (Mitchell, 1997), while the working drawings and even shop drawings were brewed and communicated through drawings only. However, the most effective method of shaping building elements is to build models by computer (Madrazo, 1999). With the trend of 3D visualization (Johnson and Clayton, 1998) and the difference of designing between the physical environment and virtual environment (Maher et al. 2000), we intend to study the possibilities of using digital models, in addition to drawings, as a critical media in the conceptual stage of building construction process in the near future (just as the critical role that physical models played in early design process in the Renaissance). This research is combined with two practical building projects, following the progress of construction by using digital models and animations to simulate the structural layouts of the projects. We also tried to solve the complicated and even conflicting problems in the detail and piping design process through an easily accessible and precise interface. An attempt was made to delineate the hierarchy of the elements in a single structural and constructional system, and the corresponding relations among the systems. Since building construction is often complicated and even conflicting, precision needed to complete the projects can not be based merely on 2D drawings with some imagination. The purpose of this paper is to describe all the related elements according to precision and correctness, to discuss every possibility of different thinking in design of electric-mechanical engineering, to receive feedback from the construction projects in the real world, and to compare the digital models with conventional drawings.Through the application of this research, the subtle relations between the conventional drawings and digital models can be used in the area of building construction. Moreover, a theoretical model and standard process is proposed by using conventional drawings, digital models and physical buildings. By introducing the intervention of digital media in design process of working drawings and shop drawings, there is an opportune chance to use the digital media as a prominent design tool. This study extends the use of digital model and animation from design process to construction process. However, the entire construction process involves various details and exceptions, which are not discussed in this paper. These limitations should be explored in future studies.
series AVOCAAD
email aleppo@cc.nctu.edu.tw
last changed 2005/09/09 08:48

_id 8775
authors Cigolle, Mark and Coleman, Kim
year 1990
title Computer Integrated Design: Transformation as Process
source The Electronic Design Studio: Architectural Knowledge and Media in the Computer Era [CAAD Futures ‘89 Conference Proceedings / ISBN 0-262-13254-0] Cambridge (Massachusetts / USA), 1989, pp. 333-346
summary To bring together poetry, magic and science, to explore beyond preconceptions, to invent spaces and forms which re-form and inform man's experience, these are the possibilities of architecture. Computer integrated design offers a means for extending the search, one which integrates both conceptual and perceptual issues in the making of architecture. The computer may assist in generating constructs which would not have been created by conventional methods. The application of computer techniques to design has to date been focused primarily on production aspects, an area which is already highly organizable and communicable. In conceptual and perceptual aspects of design, computer techniques remain underdeveloped. Since the impetus for- the development of computer applications has come from the immediate economics of practice rather than a theoretically based strategy, computer-aided design is currently biased toward the replication of conventional techniques rather than the exploration of new potentials. Over the last two years we have been involved in experimentation with methodologies which engage the computer in formative explorations of the design idea. Work produced from investigations by 4th and 5th year undergraduate students in computer integrated design studios that we have been teaching at the University of Southern California demonstrates the potential for the use of the computer as a principal tool in the exploration of syntax and perception, space and program. The challenge is to approach the making of architecture as an innovative act, one which does not rely on preconceived notions of design.
series CAAD Futures
email kcoleman@usc.edu
last changed 2003/05/16 18:58

_id e1c9
authors Danahy, John and Wright, Robert
year 1989
title Computing and Design in the Canadian Schools of Architecture and Landscape Architecture: A Proposed Research Agenda for Integrated CAD & GIS in the 1990's
source New Ideas and Directions for the 1990’s [ACADIA Conference Proceedings] Gainsville (Florida - USA) 27-29 October 1989, pp. 227-244
summary Conventional computer systems currently used by architecture and landscape architecture are not addressing complex decision making, system interface, dynamic manipulation and real time visualization of data. This paper identifies a strategy by which Canadian Schools could form a supportive network, incorporate and expand their research development. Within this larger framework schools would have better tools, a larger research base and access to funding as a group. The following discussion is an idea of what we at the Canadian Schools need to do differently over the next five years in our research and teaching in order to make a unique contribution to our fields.
series ACADIA
email jwdanahy@rogers.com
last changed 2003/04/26 19:42

_id a235
authors Danahy, John W.
year 1990
title Irises in a Landscape: An Experiment in Dynamic Interaction and Teaching Design Studio
source The Electronic Design Studio: Architectural Knowledge and Media in the Computer Era [CAAD Futures ‘89 Conference Proceedings / ISBN 0-262-13254-0] Cambridge (Massachusetts / USA), 1989, pp. 363-376
summary The capacity of most computer-aided design systems is inadequate to represent landscape architectural ideas and compute landscape scenes quickly. As part of our teaching agenda, we decided to write software for the Silicon Graphics Iris workstations to tackle this problem directly. This paper begins with a discussion of our concerns about the use of CAD tools in the representation of landscape architectural space. Secondly, we discuss the approach that Toronto takes to computing and teaching with particular emphasis on the use of computers to support an integrated representational work environment. Finally, a fourth-year design studio that used our software is reviewed. Static illustrations of the system are presented here, although there is a videotape that demonstrates the dynamic nature of the system.
series CAAD Futures
email jwdanahy@rogers.com
last changed 2003/05/16 18:58

_id acadia03_062
id acadia03_062
authors Fure, Adam and Daubmann, Karl
year 2003
title housemc - Mass-CraftingNumerical instructions for construction
source Connecting >> Crossroads of Digital Discourse [Proceedings of the 2003 Annual Conference of the Association for Computer Aided Design In Architecture / ISBN 1-880250-12-8] Indianapolis (Indiana) 24-27 October 2003, p. 434
summary Craft oriented culture was eventually displaced by mass-production, and it was not until the early 1990’s when a new paradigm began to emerge, one of infinite customer driven flexibility. Mass customization promises a flexible and efficient mode of production for customized parts or services at low cost. The catalyst for such a revolution has been computer-aided design and computer controlled manufacturing.
series ACADIA
last changed 2003/10/30 15:20

_id 8e10
authors Hosny, Samir S., Sanvido, Victor E. and Kalisperis, Loukas N.
year 1990
title A Framework for an Integrated Computer-Aided Architectural Design Decision Support System
source Pennsylvania State University, January, 1990. 33 p. : ill. includes bibliography
summary This paper presents the 'ICAAD.DSS' conceptual model, which provides a framework for an integrated computer-aided architectural design (CAAD) decision support system. The model is based on a unified approach to computing in architecture which in turn is based on a holistic view of the architectural design process. The proposed model shifts the focus from product to process, and views the design problem as a goal-oriented, problem solving activity that allows a design team to identify strategies and methodologies in the search for design solutions. This paper introduces a new environment for the use and integration of computers in the architectural design process
keywords CAD, integration, design methods, architecture, design process, decision making, problem solving
series CADline
last changed 2003/06/02 08:24

_id 39e0
id 39e0
authors Jablonski, Allen D.
year 1991
title Integrated Component-based Computer Design Modeling System: The Implications of Control Parameters on the Design Process
source New Jersey Institute of Technology, Newark, NJ Graduate Thesis - Master's Program College of Architecture
summary The design process is dependent on a clear order of integrating and managing all of the control parameters that impact on a building's design. All component elements of a building must be defined by their: Physical and functional relations; Quantitative and calculable properties; Component and/or system functions. This requires a means of representation to depict a model of a building that can be viewed and interpreted by a variety of interested parties. These parties need different types of representation to address their individual control parameters, as each component instance has specific implications on all of the control parameters.

Representations are prepared for periodic design review either manually through hand-drawn graphics and handcrafted models; or with the aid of computer aided design programs. Computer programs can profoundly increase the speed and accuracy of the process', as well as provide a level of integration, graphic representation and simulation, untenable through a manual process.

By maintaining a single control model in an Integrated Component-based Computer Design Modeling System (ICCDMS), interested parties could access the design model at any point during the process. Each party could either: 1. Analyze individual components, or constraints of the model, for interferences against parameters within that party's control; or 2. Explore design alternatives to modify the model, and verify the integration of the components or functions, within the design model, as allowable in relation to other control parameters.

keywords Architectural Design; Data Processing
series thesis:MSc
type extended abstract
email allenjabo@comcast.net
more http://www.library.njit.edu/etd/1990s/1990/njit-etd1990-005/njit-etd1990-005.html
last changed 2006/09/25 07:04

_id acadia06_496
id acadia06_496
authors Jemtrud, Michael
year 2006
title Eucalyptus: User Controlled Lightpath Enabled Participatory Design Studio
source Synthetic Landscapes [Proceedings of the 25th Annual Conference of the Association for Computer-Aided Design in Architecture] pp. 496-509
summary A new notion of participation is at stake with advances in technologically mediated work environments. The digitally mediated e-design studio has been around since the mid-1990’s and has been employed in various forms in disciplines including architecture/engineering/construction (AEC), industrial design, and the automotive industry. Insufficient bandwidth and insufficiently powerful, crudely coordinated tools resulted in distributed task-based modes of collaboration that did not allow full participation by members of the distributed design team. At the very least, the present “second generation” network severely limits the applications, tools, and modes of communication that can be used in data and visualization intense design scenarios. The emergence of Service Oriented Architectures and User-Controlled LightPaths (“intelligent infrastructure”) herald the beginning of a new age where fully participatory multi-site design may become possible. The networks, visualization & communication tools, Service Oriented Architecture & Web Services, work protocols, and physical site designs of the Participatory Design Studio (PDS) being developed by the authors will constitute one of the first working examples of this future. This paper will briefly outline the “mise en scène” or staging of the technical configuration of the Eucalyptus project; observations and results from the creative activity of the PDS in the context of two case studies; and speculate on the implications for design activity, pedagogy, and a more robust mode of participation.
series ACADIA
email mjemtrud@connect.carleton.ca
last changed 2006/09/22 06:22

_id a23f
authors Jordan, J. Peter (Ed.)
year 1990
title From Research to Practice [Conference Proceedings]
source ACADIA Conference Proceedings / Big Sky (Montana - USA) 4-6 October 1990, 231 p.
summary For the tenth time in as many years, the Association for Computer-Aided Design in Architecture (ACADIA) has invited architectural educators and professionals to discuss their activities and interests related to computer-aided architectural design. This annual meeting has grown from a small group representing a handful of schools to a conference with international participation. For the fifth time, the papers presented at this annual conference have been collected and published in a bound volume as the conference proceedings. In organizing these meetings, ACADIA must be viewed has having firmly established itself as a valuable forum for those who are interested and active in this area. Moreover, the proceedings of these conferences have become an important record for documenting the progress of ideas and activities in this field. This organization and its annual conferences have been a critical influence on my own professional development. The first conference I attended, ACADIA '86, confirmed a nagging suspicion that courses in computer-aided design (CAD) offered at the university level should be more than vendor training. Papers and conversations at subsequent conferences have reinforced this conviction and strengthened my commitment to CAD education which does more than convey electronic drawing technology. At the same time, I have been frustrated at the apparent lack of communication between those involved in these activities in architectural education and the average professional practice. With some notable exceptions, architects are only beginning to make basic computer-aided drafting pay for itself. In many small offices, "The CAD Computer" remains more decoration and status symbol than useful tool. While it can be argued that the economics of computer-aided drafting have only recently become attractive, it must be admitted that many members of ACADIA are actively involved in the development and use of computer applications which are significantly more challenging. In the short run, most of these activities will go largely unnoticed by the community of practicing architects. This situation raises a number of questions on the value of the work produced by members of ACADIA. One can (and many do) challenge the worth of "design" research produced by academia to those in professional practice. However, it is a fundamental mistake to insist that such work be of immediate and direct relevance to the profession. In fact, some presentations at the ACADIA conferences have focused solely on the pedagogical environment (which may be of some intellectual interest) but do not even attempt to address professional design issues. Other work may serve as the basis for further activities which may result in useful applications at some future point in time. Such work is strategic in nature and should not be expected to bear fruit for many years. These are the *natural" products of a university environment and, indeed, may be what the university does best. Still, design professionals remain indifferent (if not somewhat hostile) to these endeavors. The central dilemma resides in the ongoing debate about the fundamental goals of professional education. A number of design professionals believe that architectural education should follow more of a “trade school” model where a professional degree program becomes solely a process of acquiring (and practicing) a set of skills which are directly and immediately useful upon graduation. Today these people stiR closely examine the drafting skill of any recent graduate, but they are also likely to demanding expertise on AutoCAD. It is my view that this position tends to deprecate the image of architects and depreciate the economic status of the profession. On the other hand, there is a similar minority in architectural academia who teach because they are unable or unwilling to deal with the very real complexities and challenges of professional practice. These instructors tend to focus on obscure theory and academic credentials while discounting the importance of professional development. For most who participate in this discussion, it is becoming increasingly clear that professional competency must be founded on an effective marriage of intellectual theory and practical expertise. This must lead to the conclusion that CAD research must recognize and give serious consideration to the professional agenda in a substantive manner without abandoning those activities which deal with strategic and pedagogical issues.
series ACADIA
email jpjordan@flash.net
more http://www.acadia.org
last changed 2003/05/16 17:23

_id 4cf3
authors Kalay, Yehuda E.
year 1989
title Modeling Objects and Environments
source xix, 402 p. : ill. New York: Wiley, 1989. includes a short bibliography and index. Part of the Principles of Computer Aided Design series. --- See also review by Patricia G
summary McIntosh, in ACADIA Newsletter Vol. 9 No. 3 pp 20-23, June 1990. This book introduces the concept of modeling objects in the computer's memory so it can be used to aide the process of their design. Modeling is defined as an hierarchical abstraction of data and operators to manipulate it, subject to semantic integrity constraints that guarantee the realizability of the designed artifact in the real world. Starting with general concepts of modeling, the book moves on to discuss the modeling of shapes (form) in two and in three dimensions. The discussion covers both topology and geometry. Next the book introduces the concept of shape transformations (translation, scaling, rotation, etc.), both in absolute and in relative terms. The book then introduces the concept of assembly modeling, and adds non-graphical attributes to the representation. It concludes with a discussion on user interface and parametrization. The book includes many examples written in Pascal that complement the theory, and can be used as a basis for building a geometric modeling engine. It also includes exercises, so it can be used as a text book for a two-semester advance course in geometric modeling
keywords CAD, data structures, solid modeling, abstraction, polygons, solids, boolean operations, transforms, computer graphics, user interface, parametrization, B-rep, polyhedra, objects, PASCAL
series CADline
email kalay@socrates.berkeley.edu
last changed 2003/06/02 11:58

_id ab9c
authors Kvan, Thomas and Kvan, Erik
year 1999
title Is Design Really Social
source International Journal of Virtual Reality, 4:1
summary There are many who will readily agree with Mitchell's assertion that "the most interesting new directions (for computer-aided design) are suggested by the growing convergence of computation and telecommunication. This allows us to treat designing not just as a technical process... but also as a social process." [Mitchell 1995]. The assumption is that design was a social process until users of computer-aided design systems were distracted into treating it as a merely technical process. Most readers will assume that this convergence must and will lead to increased communication between design participants, that better social interaction leads to be better design. The unspoken assumption appears to be that putting the participants into an environment with maximal communication channels will result in design collaboration. The tools provided, therefore, must permit the best communication and the best social interaction. We see a danger here, a pattern being repeated which may lead us into less than useful activities. As with several (popular) architectural design or modelling systems already available, however, computer system implementations all too often are poor imitations manual systems. For example, few in the field will argue with the statement that the storage of data in layers in a computer-aided drafting system is an dispensable approach. Layers derive from manual overlay drafting technology [Stitt 1984] which was regarded as an advanced (manual) production concept at the time many software engineers were specifying CAD software designs. Early implementations of CAD systems (such as RUCAPS, GDS, Computervision) avoided such data organisation, the software engineers recognising that object-based structures are more flexible, permitting greater control of data editing and display. Layer-based systems, however, are easier to implement in software, more familiar to the user and hence easier to explain, initially easier to use but more limiting for an experienced and thoughtful user, leading in the end to a lesser quality in resultant drawings and significant problems in output control (see Richens [1990], pp. 31-40 for a detailed analysis of such features and constraints). Here then we see the design for architectural software faithfully but inappropriately following manual methods. So too is there a danger of assuming that the best social interaction is that done face-to-face, therefore all collaborative design communications environments must mimic face-to-face.
series journal paper
email tkvan@arch.hku.hk
last changed 2003/05/15 08:29

_id aea2
authors Laurel, B. (ed.)
year 1990
title The Art of Human-Computer Interface Design
source New York: Addison-Wesley.
summary Human-computer interface design is a new discipline. So new in fact, that Alan Kay of Apple Computer quipped that people "are not sure whether they should order it by the yard or the ton"! Irrespective of the measure, interface design is gradually emerging as a much-needed and timely approach to reducing the awkwardness and inconveniences of human-computer interaction. "Increased cognitive load", "bewildered and tired users" - these are the byproducts of the "plethora of options and the interface conventions" faced by computer users. Originally, computers were "designed by engineers, for engineers". Little or no attention was, or needed to be, paid to the interface. However, the pervasive use of the personal computer and the increasing number and variety of applications and programs has given rise to a need to focus on the "cognitive locus of human-computer interaction" i.e. the interface. What is the interface? Laurel defines the interface as a "contact surface" that "reflects the physical properties of the interactors, the functions to be performed, and the balance of power and control." (p.xiii) Incorporated into her definition are the "cognitive and emotional aspects of the user's experience". In a very basic sense, the interface is "the place where contact between two entities occurs." (p.xii) Doorknobs, steering wheels, spacesuits-these are all interfaces. The greater the difference between the two entities, the greater the need for a well-designed interface. In this case, the two very different entities are computers and humans. Human-conputer interface design looks at how we can lessen the effects of these differences. This means, for Laurel, empowering users by providing them with ease of use. "How can we think about it so that the interfaces we design will empower users?" "What does the user want to do?" These are the questions Laurel believes must be asked by designers. These are the questions addressed directly and indirectly by the approximately 50 contributors to The Art of Human-Computer Interface Design. In spite of the large number of contributors to the book and the wide range of fields with which they are associated, there is a broad consensus on how interfaces can be designed for empowerment and ease of use. User testing, user contexts, user tasks, user needs, user control: these terms appear throughout the book and suggest ways in which design might focus less on the technology and more on the user. With this perspective in mind, contributor D. Norman argues that computer interfaces should be designed so that the user interacts more with the task and less with the machine. Such interfaces "blend with the task", and "make tools invisible" so that "the technology is subervient to that goal". Sellen and Nicol insist on the need for interfaces that are 'simple', 'self-explanatory', 'adaptive' and 'supportive'. Contributors Vertelney and Grudin are interested in interfaces that support the contexts in which many users work. They consider ways in which group-oriented tasks and collaborative efforts can be supported and aided by the particular design of the interface. Mountford equates ease of use with understating the interface: "The art and science of interface design depends largely on making the transaction with the computer as transparent as possible in order to minimize the burden on the user".(p.248) Mountford also believes in "making computers more powerful extensions of our natural capabilities and goals" by offering the user a "richer sensory environment". One way this can be achieved according to Saloman is through creative use of colour. Saloman notes that colour can not only impart information but that it can be a useful mnemonic device to create associations. A richer sensory environment can also be achieved through use of sound, natural speech recognition, graphics, gesture input devices, animation, video, optical media and through what Blake refers to as "hybrid systems". These systems include additional interface features to control components such as optical disks, videotape, speech digitizers and a range of devices that support "whole user tasks". Rich sensory environments are often characteristic of game interfaces which rely heavily on sound and graphics. Crawford believes we have a lot to learn from the design of games and that they incorporate "sound concepts of user interface design". He argues that "games operate in a more demanding user-interface universe than other applications" since they must be both "fun" and "functional".
series other
last changed 2003/04/23 13:14

_id f047
authors Milne, Murray and Labib, Tarek
year 1990
title Tools for Designing Climate Responsive Buildings
source From Research to Practice [ACADIA Conference Proceedings] Big Sky (Montana - USA) 4-6 October 1990, pp. 161-172
summary The term "Computer-Aided Design" for some people is reserved exclusively for drafting systems that provide a 2- or 3-dimensional graphic representation of a building. But many other issues bear on the final form of a building, issues that initially cannot be represented in a drawing of that building. These issues include thermal performance, lighting, economics, behavioral factors, acoustics, structural safety, etc. Architects in the future will have a whole kit of computer-aided design tools to help them address all of these non-graphic issues. A "design tool" might be defined as something that helps an architect make a better design decision. But the development of design tools also has a hidden agenda: they leave the architect with a richer understanding of the underlying issues involved. In other words, they also teach.
series ACADIA
last changed 1999/10/10 12:27

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 12HOMELOGIN (you are user _anon_134687 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002