CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 350

_id 1bb0
authors Russell, S. and Norvig, P.
year 1995
title Artificial Intelligence: A Modern Approach
source Prentice Hall, Englewood Cliffs, NJ
summary Humankind has given itself the scientific name homo sapiens--man the wise--because our mental capacities are so important to our everyday lives and our sense of self. The field of artificial intelligence, or AI, attempts to understand intelligent entities. Thus, one reason to study it is to learn more about ourselves. But unlike philosophy and psychology, which are also concerned with AI strives to build intelligent entities as well as understand them. Another reason to study AI is that these constructed intelligent entities are interesting and useful in their own right. AI has produced many significant and impressive products even at this early stage in its development. Although no one can predict the future in detail, it is clear that computers with human-level intelligence (or better) would have a huge impact on our everyday lives and on the future course of civilization. AI addresses one of the ultimate puzzles. How is it possible for a slow, tiny brain{brain}, whether biological or electronic, to perceive, understand, predict, and manipulate a world far larger and more complicated than itself? How do we go about making something with those properties? These are hard questions, but unlike the search for faster-than-light travel or an antigravity device, the researcher in AI has solid evidence that the quest is possible. All the researcher has to do is look in the mirror to see an example of an intelligent system. AI is one of the newest disciplines. It was formally initiated in 1956, when the name was coined, although at that point work had been under way for about five years. Along with modern genetics, it is regularly cited as the ``field I would most like to be in'' by scientists in other disciplines. A student in physics might reasonably feel that all the good ideas have already been taken by Galileo, Newton, Einstein, and the rest, and that it takes many years of study before one can contribute new ideas. AI, on the other hand, still has openings for a full-time Einstein. The study of intelligence is also one of the oldest disciplines. For over 2000 years, philosophers have tried to understand how seeing, learning, remembering, and reasoning could, or should, be done. The advent of usable computers in the early 1950s turned the learned but armchair speculation concerning these mental faculties into a real experimental and theoretical discipline. Many felt that the new ``Electronic Super-Brains'' had unlimited potential for intelligence. ``Faster Than Einstein'' was a typical headline. But as well as providing a vehicle for creating artificially intelligent entities, the computer provides a tool for testing theories of intelligence, and many theories failed to withstand the test--a case of ``out of the armchair, into the fire.'' AI has turned out to be more difficult than many at first imagined, and modern ideas are much richer, more subtle, and more interesting as a result. AI currently encompasses a huge variety of subfields, from general-purpose areas such as perception and logical reasoning, to specific tasks such as playing chess, proving mathematical theorems, writing poetry{poetry}, and diagnosing diseases. Often, scientists in other fields move gradually into artificial intelligence, where they find the tools and vocabulary to systematize and automate the intellectual tasks on which they have been working all their lives. Similarly, workers in AI can choose to apply their methods to any area of human intellectual endeavor. In this sense, it is truly a universal field.
series other
last changed 2003/04/23 13:14

_id 09c6
authors Silva, Neander F.
year 1995
title The Use of Hybrid Technology in the construction of an Evolving Knowledge-Base Design System
source Sixth International Conference on Computer-Aided Architectural Design Futures [ISBN 9971-62-423-0] Singapore, 24-26 September 1995, pp. 589-598
summary This paper focus in one vital aspect of design computing: the knowledge-base extension and maintenance. It describes a hybrid approach where a rudimentary evolving knowledge-base design system is proposed. It draws inspiration from three areas of artificial intelligence: knowledge-base systems, connectionist models, and case-based reasoning. Its main contributions are: an incremental self-adjustment able to minimise substantially the dependency on knowledge engineer intervention, and an interactive support to innovation.
keywords Precedents, Connectionism, Knowledge-Bases Maintenance, Innovative Design
series CAAD Futures
email neander@unb.br
last changed 2003/05/16 18:58

_id 679e
authors Coyne, R.
year 1995
title Designing Information Technology in the Postmodern Age
source The MIT Press, Cambridge, Ma and London UK
summary Designing Information Technology in the Postmodern Age puts the theoretical discussion of computer systems and information technology on a new footing. Shifting the discourse from its usual rationalistic framework, Richard Coyne shows how the conception, development, and application of computer systems is challenged and enhanced by postmodern philosophical thought. He places particular emphasis on the theory of metaphor, showing how it has more to offer than notions of method and models appropriated from science. Coyne examines the entire range of contemporary philosophical thinking -- including logical positivism, analytic philosophy, pragmatism, phenomenology, critical theory, hermeneutics, and deconstruction -- comparing them and showing how they differ in their consequences for design and development issues in electronic communications, computer representation, virtual reality, artificial intelligence, and multimedia. He also probes the claims made of information technology, including its presumptions of control, its so-called radicality, even its ability to make virtual worlds, and shows that many of these claims are poorly founded. Among the writings Coyne visits are works by Heidegger, Adorno, Benjamin, Gadamer, Derrida, Habermas, Rorty, and Foucault. He relates their views to information technology designers and critics such as Herbert Simon, Alan Kay, Terry Winograd, Hubert Dreyfus, and Joseph Weizenbaum. In particular, Coyne draws extensively from the writing of Martin Heidegger, who has presented one of the most radical critiques of technology to date.
series other
email Richard.Coyne@ed.ac.uk
last changed 2003/04/23 13:14

_id 0128
authors Engeli, M., Kurmann, D. and Schmitt, G.
year 1995
title A New Design Studio: Intelligent Objects and Personal Agents
source Computing in Design - Enabling, Capturing and Sharing Ideas [ACADIA Conference Proceedings / ISBN 1-880250-04-7] University of Washington (Seattle, Washington / USA) October 19-22, 1995, pp. 155-170
summary As design processes and products are constantly increasing in complexity, new tools are being developed for the designer to cope with the growing demands. In this paper we describe our research towards a design environment, within which different aspects of design can be combined, elaborated and controlled. New hardware equipment will be combined with recent developments in graphics and artificial intelligence programming to develop appropriate computer based tools and find possible new design techniques. The core of the new design studio comprises intelligent objects in a virtual reality environment that exhibit different behaviours drawn from Artificial Intelligence (AI) and Artificial Life (AL) principles, a part already realised in a tool called 'Sculptor'. The tasks of the architect will focus on preferencing and initiating good tendencies in the development of the design. A first set of software agents, assistants that support the architect in viewing, experiencing and judging the design has also been conceptualised for this virtual design environment. The goal is to create an optimised environment for the designer, where the complexity of the design task can be reduced thanks to the support made available from the machine.
keywords Architectural Design, Design Process, Virtual Reality, Artificial Intelligence, Personal Agents
series ACADIA
email maia@enge.li
last changed 2003/05/16 17:23

_id 2068
authors Frazer, John
year 1995
title AN EVOLUTIONARY ARCHITECTURE
source London: Architectural Association
summary In "An Evolutionary Architecture", John Frazer presents an overview of his work for the past 30 years. Attempting to develop a theoretical basis for architecture using analogies with nature's processes of evolution and morphogenesis. Frazer's vision of the future of architecture is to construct organic buildings. Thermodynamically open systems which are more environmentally aware and sustainable physically, sociologically and economically. The range of topics which Frazer discusses is a good illustration of the breadth and depth of the evolutionary design problem. Environmental Modelling One of the first topics dealt with is the importance of environmental modelling within the design process. Frazer shows how environmental modelling is often misused or misinterpreted by architects with particular reference to solar modelling. From the discussion given it would seem that simplifications of the environmental models is the prime culprit resulting in misinterpretation and misuse. The simplifications are understandable given the amount of information needed for accurate modelling. By simplifying the model of the environmental conditions the architect is able to make informed judgments within reasonable amounts of time and effort. Unfortunately the simplications result in errors which compound and cause the resulting structures to fall short of their anticipated performance. Frazer obviously believes that the computer can be a great aid in the harnessing of environmental modelling data, providing that the same simplifying assumptions are not made and that better models and interfaces are possible. Physical Modelling Physical modelling has played an important role in Frazer's research. Leading to the construction of several novel machine readable interactive models, ranging from lego-like building blocks to beermat cellular automata and wall partitioning systems. Ultimately this line of research has led to the Universal Constructor and the Universal Interactor. The Universal Constructor The Universal Constructor features on the cover of the book. It consists of a base plug-board, called the "landscape", on top of which "smart" blocks, or cells, can be stacked vertically. The cells are individually identified and can communicate with neighbours above and below. Cells communicate with users through a bank of LEDs displaying the current state of the cell. The whole structure is machine readable and so can be interpreted by a computer. The computer can interpret the states of the cells as either colour or geometrical transformations allowing a wide range of possible interpretations. The user interacts with the computer display through direct manipulation of the cells. The computer can communicate and even direct the actions of the user through feedback with the cells to display various states. The direct manipulation of the cells encourages experimentation by the user and demonstrates basic concepts of the system. The Universal Interactor The Universal Interactor is a whole series of experimental projects investigating novel input and output devices. All of the devices speak a common binary language and so can communicate through a mediating central hub. The result is that input, from say a body-suit, can be used to drive the out of a sound system or vice versa. The Universal Interactor opens up many possibilities for expression when using a CAD system that may at first seem very strange.However, some of these feedback systems may prove superior in the hands of skilled technicians than more standard devices. Imagine how a musician might be able to devise structures by playing melodies which express the character. Of course the interpretation of input in this form poses a difficult problem which will take a great deal of research to achieve. The Universal Interactor has been used to provide environmental feedback to affect the development of evolving genetic codes. The feedback given by the Universal Interactor has been used to guide selection of individuals from a population. Adaptive Computing Frazer completes his introduction to the range of tools used in his research by giving a brief tour of adaptive computing techniques. Covering topics including cellular automata, genetic algorithms, classifier systems and artificial evolution. Cellular Automata As previously mentioned Frazer has done some work using cellular automata in both physical and simulated environments. Frazer discusses how surprisingly complex behaviour can result from the simple local rules executed by cellular automata. Cellular automata are also capable of computation, in fact able to perform any computation possible by a finite state machine. Note that this does not mean that cellular automata are capable of any general computation as this would require the construction of a Turing machine which is beyond the capabilities of a finite state machine. Genetic Algorithms Genetic algorithms were first presented by Holland and since have become a important tool for many researchers in various areas.Originally developed for problem-solving and optimization problems with clearly stated criteria and goals. Frazer fails to mention one of the most important differences between genetic algorithms and other adaptive problem-solving techniques, ie. neural networks. Genetic algorithms have the advantage that criteria can be clearly stated and controlled within the fitness function. The learning by example which neural networks rely upon does not afford this level of control over what is to be learned. Classifier Systems Holland went on to develop genetic algorithms into classifier systems. Classifier systems are more focussed upon the problem of learning appropriate responses to stimuli, than searching for solutions to problems. Classifier systems receive information from the environment and respond according to rules, or classifiers. Successful classifiers are rewarded, creating a reinforcement learning environment. Obviously, the mapping between classifier systems and the cybernetic view of organisms sensing, processing and responding to environmental stimuli is strong. It would seem that a central process similar to a classifier system would be appropriate at the core of an organic building. Learning appropriate responses to environmental conditions over time. Artificial Evolution Artificial evolution traces it's roots back to the Biomorph program which was described by Dawkins in his book "The Blind Watchmaker". Essentially, artificial evolution requires that a user supplements the standard fitness function in genetic algorithms to guide evolution. The user may provide selection pressures which are unquantifiable in a stated problem and thus provide a means for dealing ill-defined criteria. Frazer notes that solving problems with ill-defined criteria using artificial evolution seriously limits the scope of problems that can be tackled. The reliance upon user interaction in artificial evolution reduces the practical size of populations and the duration of evolutionary runs. Coding Schemes Frazer goes on to discuss the encoding of architectural designs and their subsequent evolution. Introducing two major systems, the Reptile system and the Universal State Space Modeller. Blueprint vs. Recipe Frazer points out the inadequacies of using standard "blueprint" design techniques in developing organic structures. Using a "recipe" to describe the process of constructing a building is presented as an alternative. Recipes for construction are discussed with reference to the analogous process description given by DNA to construct an organism. The Reptile System The Reptile System is an ingenious construction set capable of producing a wide range of structures using just two simple components. Frazer saw the advantages of this system for rule-based and evolutionary systems in the compactness of structure descriptions. Compactness was essential for the early computational work when computer memory and storage space was scarce. However, compact representations such as those described form very rugged fitness landscapes which are not well suited to evolutionary search techniques. Structures are created from an initial "seed" or minimal construction, for example a compact spherical structure. The seed is then manipulated using a series of processes or transformations, for example stretching, shearing or bending. The structure would grow according to the transformations applied to it. Obviously, the transformations could be a predetermined sequence of actions which would always yield the same final structure given the same initial seed. Alternatively, the series of transformations applied could be environmentally sensitive resulting in forms which were also sensitive to their location. The idea of taking a geometrical form as a seed and transforming it using a series of processes to create complex structures is similar in many ways to the early work of Latham creating large morphological charts. Latham went on to develop his ideas into the "Mutator" system which he used to create organic artworks. Generalising the Reptile System Frazer has proposed a generalised version of the Reptile System to tackle more realistic building problems. Generating the seed or minimal configuration from design requirements automatically. From this starting point (or set of starting points) solutions could be evolved using artificial evolution. Quantifiable and specific aspects of the design brief define the formal criteria which are used as a standard fitness function. Non-quantifiable criteria, including aesthetic judgments, are evaluated by the user. The proposed system would be able to learn successful strategies for satisfying both formal and user criteria. In doing so the system would become a personalised tool of the designer. A personal assistant which would be able to anticipate aesthetic judgements and other criteria by employing previously successful strategies. Ultimately, this is a similar concept to Negroponte's "Architecture Machine" which he proposed would be computer system so personalised so as to be almost unusable by other people. The Universal State Space Modeller The Universal State Space Modeller is the basis of Frazer's current work. It is a system which can be used to model any structure, hence the universal claim in it's title. The datastructure underlying the modeller is a state space of scaleless logical points, called motes. Motes are arranged in a close-packing sphere arrangement, which makes each one equidistant from it's twelve neighbours. Any point can be broken down into a self-similar tetrahedral structure of logical points. Giving the state space a fractal nature which allows modelling at many different levels at once. Each mote can be thought of as analogous to a cell in a biological organism. Every mote carries a copy of the architectural genetic code in the same way that each cell within a organism carries a copy of it's DNA. The genetic code of a mote is stored as a sequence of binary "morons" which are grouped together into spatial configurations which are interpreted as the state of the mote. The developmental process begins with a seed. The seed develops through cellular duplication according to the rules of the genetic code. In the beginning the seed develops mainly in response to the internal genetic code, but as the development progresses the environment plays a greater role. Cells communicate by passing messages to their immediate twelve neighbours. However, it can send messages directed at remote cells, without knowledge of it's spatial relationship. During the development cells take on specialised functions, including environmental sensors or producers of raw materials. The resulting system is process driven, without presupposing the existence of a construction set to use. The datastructure can be interpreted in many ways to derive various phenotypes. The resulting structure is a by-product of the cellular activity during development and in response to the environment. As such the resulting structures have much in common with living organisms which are also the emergent result or by-product of local cellular activity. Primordial Architectural Soups To conclude, Frazer presents some of the most recent work done, evolving fundamental structures using limited raw materials, an initial seed and massive feedback. Frazer proposes to go further and do away with the need for initial seed and start with a primordial soup of basic architectural concepts. The research is attempting to evolve the starting conditions and evolutionary processes without any preconditions. Is there enough time to evolve a complex system from the basic building blocks which Frazer proposes? The computational complexity of the task being embarked upon is not discussed. There is an implicit assumption that the "superb tactics" of natural selection are enough to cut through the complexity of the task. However, Kauffman has shown how self-organisation plays a major role in the early development of replicating systems which we may call alive. Natural selection requires a solid basis upon which it can act. Is the primordial soup which Frazer proposes of the correct constitution to support self-organisation? Kauffman suggests that one of the most important attributes of a primordial soup to be capable of self-organisation is the need for a complex network of catalysts and the controlling mechanisms to stop the reactions from going supracritical. Can such a network be provided of primitive architectural concepts? What does it mean to have a catalyst in this domain? Conclusion Frazer shows some interesting work both in the areas of evolutionary design and self-organising systems. It is obvious from his work that he sympathizes with the opinions put forward by Kauffman that the order found in living organisms comes from both external evolutionary pressure and internal self-organisation. His final remarks underly this by paraphrasing the words of Kauffman, that life is always to found on the edge of chaos. By the "edge of chaos" Kauffman is referring to the area within the ordered regime of a system close to the "phase transition" to chaotic behaviour. Unfortunately, Frazer does not demonstrate that the systems he has presented have the necessary qualities to derive useful order at the edge of chaos. He does not demonstrate, as Kauffman does repeatedly, that there exists a "phase transition" between ordered and chaotic regimes of his systems. He also does not make any studies of the relationship of useful forms generated by his work to phase transition regions of his systems should they exist. If we are to find an organic architecture, in more than name alone, it is surely to reside close to the phase transition of the construction system of which is it built. Only there, if we are to believe Kauffman, are we to find useful order together with environmentally sensitive and thermodynamically open systems which can approach the utility of living organisms.
series other
type normal paper
last changed 2004/05/22 12:12

_id 33f3
authors Fujii, Haruyuki
year 1995
title Incorporation of Natural Language Processing and a Generative System - An Interactive System that Constructs Topological Models from Spatial Descriptions in Natural Language
source Sixth International Conference on Computer-Aided Architectural Design Futures [ISBN 9971-62-423-0] Singapore, 24-26 September 1995, pp. 205-218
summary The natural language processing technique and the spatial reasoning technique are incorporated to create a computational model representing the process of updating and maintaining the knowledge about spatial relations. An algorithm for the spatial reasoning is proposed. An interactive system that understands sentences describing spatial relations is implemented. The system determines the reference of an anaphoric or deictic expression from the literal meaning of the input and the implicit meaning derived from the literal meaning. The consistency of the spatial relations is maintained. The correct topological representations of the spatial relations are generated from well-formed descriptions.
keywords Natural Language Processing, Discourse Analysis, Artificial Intelligence, Architecture, CAD
series CAAD Futures
email hfujii@arch.titech.ac.jp
last changed 2003/05/16 18:58

_id 4a1a
authors Laird, J.E.
year 2001
title Using Computer Game to Develop Advanced AI
source Computer, 34 (7), July pp. 70-75
summary Although computer and video games have existed for fewer than 40 years, they are already serious business. Entertainment software, the entertainment industry's fastest growing segment, currently generates sales surpassing the film industry's gross revenues. Computer games have significantly affected personal computer sales, providing the initial application for CD-ROMs, driving advancements in graphics technology, and motivating the purchase of ever faster machines. Next-generation computer game consoles are extending this trend, with Sony and Toshiba spending $2 billion to develop the Playstation 2 and Microsoft planning to spend more than $500 million just to market its Xbox console [1]. These investments have paid off. In the past five years, the quality and complexity of computer games have advanced significantly. Computer graphics have shown the most noticeable improvement, with the number of polygons rendered in a scene increasing almost exponentially each year, significantly enhancing the games' realism. For example, the original Playstation, released in 1995, renders 300,000 polygons per second, while Sega's Dreamcast, released in 1999, renders 3 million polygons per second. The Playstation 2 sets the current standard, rendering 66 million polygons per second, while projections indicate the Xbox will render more than lOO million polygons per second. Thus, the images on today's $300 game consoles rival or surpass those available on the previous decade's $50,000 computers. The impact of these improvements is evident in the complexity and realism of the environments underlying today's games, from detailed indoor rooms and corridors to vast outdoor landscapes. These games populate the environments with both human and computer controlled characters, making them a rich laboratory for artificial intelligence research into developing intelligent and social autonomous agents. Indeed, computer games offer a fitting subject for serious academic study, undergraduate education, and graduate student and faculty research. Creating and efficiently rendering these environments touches on every topic in a computer science curriculum. The "Teaching Game Design " sidebar describes the benefits and challenges of developing computer game design courses, an increasingly popular field of study
series journal paper
last changed 2003/04/23 13:50

_id sigradi2008_049
id sigradi2008_049
authors Benamy, Turkienicz ; Beck Mateus, Mayer Rosirene
year 2008
title Computing And Manipulation In Design - A Pedagogical Experience Using Symmetry
source SIGraDi 2008 - [Proceedings of the 12th Iberoamerican Congress of Digital Graphics] La Habana - Cuba 1-5 December 2008
summary The concept of symmetry has been usually restricted to bilateral symmetry, though in an extended sense it refers to any isometric transformation that maintains a certain shape invariant. Groups of operations such as translation, rotation, reflection and combinations of these originate patterns classified by modern mathematics as point groups, friezes and wallpapers (March and Steadman, 1974). This extended notion represents a tool for the recognition and reproduction of patterns, a primal aspect of the perception, comprehension and description of everything that we see. Another aspect of this process is the perception of shapes, primary and emergent. Primary shapes are the ones explicitly represented and emergent shapes are the ones implicit in the others (Gero and Yan, 1994). Some groups of shapes known as Semantic Shapes are especially meaningful in architecture, expressing visual features so as symmetry, rhythm, movement and balance. The extended understanding of the concept of symmetry might improve the development of cognitive abilities concerning the creation, recognition and meaning of forms and shapes, aspects of visual reasoning involved in the design process. This paper discusses the development of a pedagogical experience concerned with the application of the concept of symmetry in the creative generation of forms using computational tools and manipulation. The experience has been carried out since 1995 with 3rd year architectural design students. For the exploration of compositions based on symmetry operations with computational support we followed a method developed by Celani (2003) comprising the automatic generation and update of symmetry patterns using AutoCAD. The exercises with computational support were combined with other different exercises in each semester. The first approach combined the creation of two-dimensional patterns to their application and to their modeling into three-dimensions. The second approach combined the work with computational support with work with physical models and mirrors and the analysis of the created patterns. And the third approach combined the computational tasks with work with two-dimensional physical shapes and mirrors. The student’s work was analyzed under aspects such as Discretion/ Continuity –the creation of isolated groups of shapes or continuous overlapped patterns; Generation of Meta-Shapes –the emergence of new shapes from the geometrical relation between the generative shape and the structure of the symmetrical arrangement; Modes of Representation –the visual aspects of the generative shape such as color and shading; Visual Reasoning –the derivation of 3D compositions from 2D patterns by their progressive analysis and recognition; Conscious Interaction –the simultaneous creation and analysis of symmetry compositions, whether with computational support or with physical shapes and mirrors. The combined work with computational support and with physical models and mirrors enhanced the students understanding on the extended concept of symmetry. The conscious creation and analysis of the patterns also stimulated the student’s understanding over the different semantic possibilities involved in the exploration of forms and shapes in two or three dimensions. The method allowed the development of both syntactic and semantic aspects of visual reasoning, enhancing the students’ visual repertoire. This constitutes an important strategy in the building of the cognitive abilities used in the architectural design process.
keywords Symmetry, Cognition, Computing, Visual reasoning, Design teaching
series SIGRADI
email mateusbeck@pop.com.br
last changed 2016/03/10 08:47

_id 94cd
id 94cd
authors Heintz, J.L.
year 1995
title DESIGN KNOWLEDGE SYSTEMS: ARTIFICIAL INTELLIGENCE FOR THE INTELLIGENT ARCHITECT; ARCHITECTURAL DOMAIN DOCUMENTATION AND ANALYSIS
source Oxman, R.M., Bax, M.F.Th., Achten, H.H. (eds.) Design research in the Netherlands, 71-87
series book
type normal paper
email H.H.Achten@tue.nl
more http://www.designresearch.nl/PDF/DRN1995_Heintz.pdf
last changed 2005/10/12 13:15

_id e613
authors Kardos, Peter
year 1995
title The Role of Spatial Experience Anticipation in Architectural Education and Urban Design
source The Future of Endoscopy [Proceedings of the 2nd European Architectural Endoscopy Association Conference / ISBN 3-85437-114-4]
summary Space and its matter substance are the main subjects of urban design, in which an architect, by setting in order the functional-operating relationships and the matter-dimensional manifestations of the formed structure, operates with the aim to achieve general harmony, functional and expressive complexity. Demanding a process, which coordinates relationships in all space dimensions, requires flexible openness of the work documentation during the conception period. Experience proved that such requirements are satisfactorily accomplished by the method of space-modeling, where the creative process happens on the working model.

The reality, though diminished in a simplified form, is in advance, i.e. in an anticipated way. By adapted periscope the endoscopic method develops the method of spatial modeling in new media dimension and enriches it towards creativeness by enabling the simulated space to be percepted on a traditional artificial model in natural horizon of a man. To secure the anticipation by visual simulation of spatial experience on the monitor in a trustworthy manner with respect to real reality, according to relevant aspects of the conception, the visual simulation must respect the rules of sensory perception of a man in real environment. From the procedural point of view of perception the most significant fact for the psyche is the sequence dynamics of the subject and the movement of the perceiver in space. This means that in the mind of the perceiver the most emotionally reflected is the dynamic spatial experience.

Despite the known disadvantages and technical circumstances of model building the method of spatial endoscopy proved itself in didactics, mainly in the approval phase of the aims of urbanistic composition and shaping of an urban space, especially because it enables to carry out by interactive means the sequence research and evaluation of the simulated space on the working model, directly in the studio or in laboratory conditions with relatively low expenses, and with the possibility of immediate correction and subsequent evaluation of the effect. Similarly, its audiovisually elaborated media outputs may simultaneously complete the identical model presentation within evaluating and approving continuations in professional gremiums or in making the results of urban and architectonic solutions popular in the layman public. According to an informal public opinion research on the effect of both CAD and endoscopy simulations, the later one is more popular. Is is, however, a matter of subjective evaluation and experience or a matter of commercial application.

keywords Architectural Endoscopy, Real Environments
series EAEA
more http://info.tuwien.ac.at/eaea/
last changed 2005/09/09 08:43

_id 4d18
authors Turkle, S.
year 1995
title Life on the Screen: identity in the age of the Internet
source New York: Simon & Shuster
summary Sherry Turkle is rapidly becoming the sociologist of the Internet, and that's beginning to seem like a good thing. While her first outing, The Second Self: Computers and the Human Spirit, made groundless assertions and seemed to be carried along more by her affection for certain theories than by a careful look at our current situation, Life on the Screen is a balanced and nuanced look at some of the ways that cyberculture helps us comment upon real life (what the cybercrowd sometimes calls RL). Instead of giving in to any one theory on construction of identity, Turkle looks at the way various netizens have used the Internet, and especially MUDs (Multi-User Dimensions), to learn more about the possibilities available in apprehending the world. One of the most interesting sections deals with gender, a topic prone to rash and partisan pronouncements. Taking as her motto William James's maxim "Philosophy is the art of imagining alternatives," Turkle shows how playing with gender in cyberspace can shape a person's real-life understanding of gender. Especially telling are the examples of the man who finds it easier to be assertive when playing a woman, because he believes male assertiveness is now frowned upon while female assertiveness is considered hip, and the woman who has the opposite response, believing that it is easier to be aggressive when she plays a male, because as a woman she would be considered "bitchy." Without taking sides, Turkle points out how both have expanded their emotional range. Other topics, such as artificial life, receive an equally calm and sage response, and the first-person accounts from many Internet users provide compelling reading and good source material for readers to draw their own conclusions.
series other
last changed 2003/04/23 13:14

_id 695f
authors Galle, P.
year 1995
title Towards integrated, intelligent, and compliant computer modeling of buildings
source Automation in Construction 4 (3) (1995) pp. 189-211
summary This paper is a survey of current research into computer modeling of buildings. Just as much, however, it is a contribution to a debate on the future of this field of research (and as such expresses the author's opinions, rather than mere facts). It is suggested that more research should be conducted in a top-down "'problem-driven" (rather than in a bottom-up. "technology-driven") manner. As the goal of future research, ten desirable system properties are proposed and grouped together under three headings: integration. intelligence", and compliance. A critical survey of the current state-of-the-art of computer modeling of buildings is given, to assess how far we are from systems with such properties. On that background problems are discussed which are major obstacles to the proposed kind of systems (hence good starting points lot problem-driven research and some ways of approaching these problems are briefly evaluated.
keywords Computer Modeling of Buildings; Product Modeling: Computer Aided Building Design; Critical Survey; Goal-Setting Debate; Concurrency Control: Integrity Constraint Management; Representation; Complexity of Representations
series journal paper
more http://www.elsevier.com/locate/autcon
last changed 2003/05/15 12:47

_id e75d
authors Achten, H., Dijkstra, J., Oxman, R. and Bax, Th.
year 1995
title Knowledge-Based Systems Programming for Knowledge Intensive Teaching
source Multimedia and Architectural Disciplines [Proceedings of the 13th European Conference on Education in Computer Aided Architectural Design in Europe / ISBN 0-9523687-1-4] Palermo (Italy) 16-18 November 1995, pp. 139-148
summary Typological design implies extensive knowledge of building types in order to design a building belonging to a building type. It facilitates the design process, which can be considered us a sequence of decisions. The paper gives an outline of a new approach in a course teaching typological knowledge through the medium of Knowledge-Based Systems programming. It demonstrates how Knowledge-Based Systems offer an appropriate structure for analysing the knowledge required to implement typological design. The class consists of third-year undergraduate students with no extensive previous programming experience. The implementation language is AutoLISP which operates in the AutoCAD environment. The building type used in the course is the office building. in order to become acquainted with both building type and programming in AutoLISP, information and instructions have been gathered and prestructured, including a worked out analysis and AutoLISP code. Office plans are generated through use of the Knowledge-Based System. They are encoded in the form of frames. At the end of the course the students will have learned the basics of Knowledge-Based Systems, have been introduced to programming these systems, have analysed and reflected upon the design process, and gained insight into a specific building type.
series eCAADe
email h.h.achten@bwk.tue.nl
more http://dpce.ing.unipa.it/Webshare/Wwwroot/ecaade95/Pag_18.htm
last changed 2003/11/21 14:15

_id 8a8a
authors Akin, Ö., Sen, R., Donia,M. and Zhang, Y.
year 1995
title SEED-Pro: Computer-Assisted Architectural Programming in SEED
source Journal of Architectural Engineering -- December 1995 -- Volume 1, Issue 4, pp. 153-161
summary Computer-assisted architectural programming is in its infancy. What there is in terms of architectural programming theory often differs from practice. In the first half of this paper we define relevant terms, provide abrief review of the state of the art, and draw attention to the primacy of architectural programming in design. SEED-Pro is introduced as an intelligent assistant providing structure to the normally open-endedactivities of design. This includes the creation of an architectural program from scratch. In the second, more technical, part of the paper we emphasize three specific topics. The design problem specificationfunctionality is described. The generation and evaluation of the emerging architectural program is discussed. An approach to the decomposition of the architectural program into alternative hierarchies is provided.The paper concludes with a discussion of what is and remains to be accomplished.
series journal paper
email oa04@andrew.cmu.edu
last changed 2003/05/15 19:27

_id 0bbb
authors Alshawi, Mustafa
year 1995
title Dynamic Generation of Design Plans at the Brief Stage
source Sixth International Conference on Computer-Aided Architectural Design Futures [ISBN 9971-62-423-0] Singapore, 24-26 September 1995, pp. 219-228
summary The traditional approach to design and construction suffers from many limitations. As the technology becomes more available to the average users, the need for an effective and efficient solution has never been greater. This paper introduces an alternative approach to the life cycle of construction projects "application controlled process". Based on this approach, a framework for an Integrated Construction Environment (ICE) has been developed and implemented in a prototype demonstrator "SPACE" (Simultaneous Prototyping for An integrated Construction Environment). This paper is only concerns with those parts of the ICE which are relevant to the dynamic generation of design drawings. The NIRMANI system aims at generating a schematic design by retrieving previous design solutions that match the problem specification from a multimedia case library. While the Bay Design Systems aims at re-adjusting the produced design solution to minimise construction problems.
keywords Integrated Environments, Case-Based Design, Project Life Cycle, Integrated Construction Environment
series CAAD Futures
email M.A.Alshawi@salford.ac.uk
last changed 2003/11/21 14:15

_id c642
authors Andersen, T. and Carlsen, N.V.
year 1995
title Software design of maintainable knowledge-based systems for building design
source Automation in Construction 4 (2) (1995) pp. 101-110
summary Identifying and establishing a basic structure for knowledge representation is one of the keys to successful design of knowledge-based computer systems. In Building Design and Construction, this initial knowledge structure can be achieved by utilizing a query driven approach to software engineering. As (user) queries reflect the user's demand for in/output, it is natural to link the overall user dialogue with key elements in the knowledge base direct connections between user screen and objects in the knowledge base support prototyping and testing the application during development. However, the price for pursuing this approach in its pure form can be high, as needs for later maintenance and augmentation of the system can be very hard to fulfill. To overcome these problems, a strict user interlace, software separation strategy must be. introduced at early stages of software design. and implemented as a global control module as independent of the knowledge processing as possible.
keywords Knowledge-based; Query driven: Software design; User interlace: Separation; Maintainable systems
series journal paper
more http://www.elsevier.com/locate/autcon
last changed 2003/06/02 07:35

_id 00ae
id 00ae
authors Ataman, Osman
year 1995
title Building A Computer Aid for Teaching Architectural Design Concepts
source Computing in Design - Enabling, Capturing and Sharing Ideas [ACADIA Conference Proceedings / ISBN 1-880250-04-7] University of Washington (Seattle, Washington / USA) October 19-22, 1995, pp. 187-208
summary Building an aid for teaching architectural design concepts is the process of elaborating topics, defining problems and suggesting to the students strategies for solving those problems. I believe students in Environment and Behavior (E&B) courses at Georgia Tech can benefit greatly from a computer based educational tool designed to provide them with experiences they currently do not possess. In particular, little time in the course (outside lectures) is devoted to applying concepts taught in the course to the studio projects. The tool I am proposing provides students with an opportunity to critique architectural environments (both simple examples and previous projects) using a single concept, "affordances". This paper describes my current progress toward realizing the goal of designing a tool that will help the students to understand particular concepts and to integrate them into their designs. It is my claim that an integrative and interactive approach - creating a learning environment and making both the students and the environment mutually supportive- is fundamentally more powerful than traditional educational methods.

series ACADIA
email oataman@uiuc.edu
last changed 2003/12/20 04:41

_id ddssar0206
id ddssar0206
authors Bax, M.F.Th. and Trum, H.M.G.J.
year 2002
title Faculties of Architecture
source Timmermans, Harry (Ed.), Sixth Design and Decision Support Systems in Architecture and Urban Planning - Part one: Architecture Proceedings Avegoor, the Netherlands), 2002
summary In order to be inscribed in the European Architect’s register the study program leading to the diploma ‘Architect’ has to meet the criteria of the EC Architect’s Directive (1985). The criteria are enumerated in 11 principles of Article 3 of the Directive. The Advisory Committee, established by the European Council got the task to examine such diplomas in the case some doubts are raised by other Member States. To carry out this task a matrix was designed, as an independent interpreting framework that mediates between the principles of Article 3 and the actual study program of a faculty. Such a tool was needed because of inconsistencies in the list of principles, differences between linguistic versions ofthe Directive, and quantification problems with time, devoted to the principles in the study programs. The core of the matrix, its headings, is a categorisation of the principles on a higher level of abstractionin the form of a taxonomy of domains and corresponding concepts. Filling in the matrix means that each study element of the study programs is analysed according to their content in terms of domains; thesummation of study time devoted to the various domains results in a so-called ‘profile of a faculty’. Judgement of that profile takes place by committee of peers. The domains of the taxonomy are intrinsically the same as the concepts and categories, needed for the description of an architectural design object: the faculties of architecture. This correspondence relates the taxonomy to the field of design theory and philosophy. The taxonomy is an application of Domain theory. This theory,developed by the authors since 1977, takes as a view that the architectural object only can be described fully as an integration of all types of domains. The theory supports the idea of a participatory andinterdisciplinary approach to design, which proved to be awarding both from a scientific and a social point of view. All types of domains have in common that they are measured in three dimensions: form, function and process, connecting the material aspects of the object with its social and proceduralaspects. In the taxonomy the function dimension is emphasised. It will be argued in the paper that the taxonomy is a categorisation following the pragmatistic philosophy of Charles Sanders Peirce. It will bedemonstrated as well that the taxonomy is easy to handle by giving examples of its application in various countries in the last 5 years. The taxonomy proved to be an adequate tool for judgement ofstudy programs and their subsequent improvement, as constituted by the faculties of a Faculty of Architecture. The matrix is described as the result of theoretical reflection and practical application of a matrix, already in use since 1995. The major improvement of the matrix is its direct connection with Peirce’s universal categories and the self-explanatory character of its structure. The connection with Peirce’s categories gave the matrix a more universal character, which enables application in other fieldswhere the term ‘architecture’ is used as a metaphor for artefacts.
series DDSS
last changed 2003/11/21 14:16

_id aab6
authors Bermudez, Julio
year 1995
title Designing Architectural Experiences: Using Computers to Construct Temporal 3D Narratives
source Computing in Design - Enabling, Capturing and Sharing Ideas [ACADIA Conference Proceedings / ISBN 1-880250-04-7] University of Washington (Seattle, Washington / USA) October 19-22, 1995, pp. 139-149
summary Computers are launching us into a representational revolution that fundamentally challenges the way we have hitherto conceived and practiced architecture. This paper will explore one of its fronts: the simulation of architectural experiences. Today's off-the-shelf softwares (e.g. 3D modeling, animations, multimedia) allow us for first time in history to depict and thus approach architectural design and criticism truly experientially. What is so appealing about this is the possibility of shifting our attention from the object to the experience of the object and in so doing reconceptualizing architectural design as the design of architectural experiences. Carrying forward such a phenomenological proposition requires us to know (1) how to work with non-traditional and 'quasi-immersive' (or subject-centered) representational systems, and (2) how to construct temporal assemblages of experiential events that unfold not unlike 'architectural stories'. As our discipline lacks enough knowledge on this area, importing models from other fields appears as an appropriate starting point. In this sense, the narrative arts (especially those involved with the temporal representation of audio-visual narratives) offer us the best insights. For example, principles of cinema and storytelling give us an excellent guidance for designing architectural experiences that have a structuring theme (parti), a plot (order), unfolding episodes (rhythm), and special events (details). Approaching architecture as a temporal 3D narrative does transform the design process and, consequently, its results. For instance, (1) phenomenological issues enter the decision making process in an equal footing to functional, technological, or compositional considerations; (2) orthographic representations become secondary sources of information, mostly used for later accurate dimensioning or geometrization; (3) multi-sensory qualities beyond sight are seriously considered (particularly sound, texture, and kinesthetic); etc.
series ACADIA
email bermudez@arch.utah.edu
last changed 2003/11/21 14:16

_id 7555
authors Brown, F., Cooper, G., Ford, S., Aouad, G., Brandon, P., Child, T., Kirkham, J., Oxman, R. and Young, B.
year 1995
title An integrated approach to CAD: modelling concepts in building design and construction
source Design Studies 16 (3) (1995) pp. 327-347
summary The ICON project is concerned with the creation of a generic information structure for the construction industry. A central feature of the information model is the use of object-oriented modelling techniques to allow information to be viewed from different 'perspectives' and at different levels of abstraction, according to the requirements of the user. This paper discusses the object modelling of concepts and information in the design area. Drawing on knowledge elicited from protocol analysis of the design activity, a series of interrelated object models has been developed, reflecting different perspectives and abstraction levels within the design domain. Three of these models (spatial design, physical design and structural design) are presented and their implications for the communication and sharing of information discussed.
series journal paper
last changed 2003/05/15 19:45

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 17HOMELOGIN (you are user _anon_24915 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002