CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 394

_id c6b2
authors Fenves, S.J., Garrett, J.H., Kiliccote, H., Law, K.H. and Reed, K.A.
year 1995
title Computer representations of design standards and building codes: a U.S. perspective
source The Int. Journal of Construction IT3(1), pp.13-34
summary Standards representation and processing in the United States has had a long and interesting history of development. The work in the past has focused primarily on representing a standard, evaluating the intrinsic properties of that represented standard, and evaluating designs for conformance to that standard. To date, for a variety of reasons, standards writing organizations and computer-aided design software vendors have not adopted much of the results of this research. The failure of the approach so far in the U.S. can be traced to two distinct areas. One major cluster of causes is methodological: the initial concepts were not backed up by usable, persistent computer tools; and the initial application and model were not representative. The second cluster of causes of failure is professional, and has a lot to do with the dynamics of interaction of individuals and organizations. Future research must address the inadequacies of the current representations and create models that are able to represent all, or almost all, of the different types of provisions in any given standard; investigate and deliver a much richer set of processing functionality's, such as more support for use of design standards in earlier phases of design; support the treatment of multiple, heterogeneous standards available from distributed sources; and determine what type of support is needed to go from the textual versions of design standards to the formal models that can support sophisticated computation.
series journal paper
last changed 2003/05/15 19:45

_id b982
authors Vanier, D.J.
year 1995
title Canada and computer representations of design standards and building codes
source The Int. Journal of Construction IT 3(1), pp.1-12
summary Building codes are an essential part of the construction industry; they define how to construct safe, durable and reliable structures. Information technology provide new opportunities for accessing building codes and for simplifying their use. Canada has a long history in the research of information technologies and building codes. This paper describes the complete, continuing and future research projects as well as commercial products related to the computer representation of design standards and building codes in the Canadian context. Example of the activities include enabling technologies such as compact disks, hypertext models, expert systems, minicode generation, classification systems, and CAD interfaces.
series journal paper
last changed 2003/05/15 19:45

_id a927
authors Amirante, Isabella and Bosco, Antonio
year 1995
title Hypertext Between Research and Teaching: An Experience in a Didactic Building Technology Laboratory
source Multimedia and Architectural Disciplines [Proceedings of the 13th European Conference on Education in Computer Aided Architectural Design in Europe / ISBN 0-9523687-1-4] Palermo (Italy) 16-18 November 1995, pp. 3-12
summary IPER (hypertext for the knowledge of building patrimony) is the result of a research developed with C.N.R. (National Research Institute). The aim of IPER is to provide the knowledge, the description and the management of one or more historical buildings for public or private institutions. IPER allowed us to improve our methodology of building analysis, covering various disciplinary fields, in two different systems. (1.) the first one, synthetic and suitable for a group of historical buildings, (2.) the second one, complex and particularly made for monumental buildings. // This experience is related to the new regulation of teaching architecture in Italy made in 1993. The main novelty is the introduction of the laboratories with the contemporary presence of two or three teachers of different disciplines, working together with the students on the same project with different approaches. This opportunity allowed us to introduce the "knowledge engineer" as a teacher in the laboratory of building technology. IPER is given to the students with the aim of experimenting and solving the theoretical and practical difficulties that students of different years may encounter in the knowledge and representation of buildings and in the organisation of all the data from the case study.
series eCAADe
more http://dpce.ing.unipa.it/Webshare/Wwwroot/ecaade95/Pag_1.htm
last changed 2003/11/21 14:15

_id c642
authors Andersen, T. and Carlsen, N.V.
year 1995
title Software design of maintainable knowledge-based systems for building design
source Automation in Construction 4 (2) (1995) pp. 101-110
summary Identifying and establishing a basic structure for knowledge representation is one of the keys to successful design of knowledge-based computer systems. In Building Design and Construction, this initial knowledge structure can be achieved by utilizing a query driven approach to software engineering. As (user) queries reflect the user's demand for in/output, it is natural to link the overall user dialogue with key elements in the knowledge base direct connections between user screen and objects in the knowledge base support prototyping and testing the application during development. However, the price for pursuing this approach in its pure form can be high, as needs for later maintenance and augmentation of the system can be very hard to fulfill. To overcome these problems, a strict user interlace, software separation strategy must be. introduced at early stages of software design. and implemented as a global control module as independent of the knowledge processing as possible.
keywords Knowledge-based; Query driven: Software design; User interlace: Separation; Maintainable systems
series journal paper
more http://www.elsevier.com/locate/autcon
last changed 2003/06/02 07:35

_id ff05
authors Butelski, Kazimierz
year 1995
title A Brief Note on Virtual Space
source CAD Space [Proceedings of the III International Conference Computer in Architectural Design] Bialystock 27-29 April 1995, pp. 83-92
summary In its efforts to represent space, and then create architecture on the basis of this representation, humanity has taken three major steps. STEP 1. Representation of space in the form of a drawing or model; representations compared to the mental vision and then redrawn or remodelled, until the vision takes the shape of a finished building. This technology of design" followed different conventions, depending on the epoch. In the Middle Ages the method of approximation by triangles was introduced. The Renaissance used Projection, Elevation and Cross-Section. In order to construct a building, a flat, abstract representation is used, supplemented by a model showing spatial relations and a verbal description, impossible to convey graphically. STEP 2. Methods as in Step 1, but, beginning in the 1970s, with the use of computers, which allows also for the gradual integration of these methods in one program. Theoretically speaking, all necessary data can be now recorded, visualized, animated, etc., on a PC class computer. The design-aid software is based on the method of creating a 3D model of the whole building, and then generating the rest (projections, cross-sections) from it. STEP 3. The above step have - brought us to near- perfection in photorealistic representation of space, which remains, however only a 2D abstraction from 3D space. The next step, which is now taking place before (and in?) our very eyes, is to use systems which bring us directly into 3D space.
series plCAD
last changed 2000/01/24 09:08

_id aa01
authors Butelski, Kazimierz
year 1995
title On Similarities between the Conventions of Computer Modelling and the Creation of Architectural Form
source Multimedia and Architectural Disciplines [Proceedings of the 13th European Conference on Education in Computer Aided Architectural Design in Europe / ISBN 0-9523687-1-4] Palermo (Italy) 16-18 November 1995, pp. 71-74
summary The following remarks relate to the creation of a geometric representation, which determines the future form of a building. I also discuss the relation between the three main conventions of computer modelling: Constructive Solid Geometry, Boundary Representation, Metagraphics and the currently design methods. For the sake of comparison, I selected three contemporary architects, Zaha Hadid, Arata Isozaki and Rob Krier represent mutually opposed, and also strongly ideological currents in today´s architecture, Arata Isozaki occupies the middle ground.
series eCAADe
email pabutels@cyf-kr.edu.pl
more http://dpce.ing.unipa.it/Webshare/Wwwroot/ecaade95/Pag_9.htm
last changed 2000/12/02 12:25

_id 2068
authors Frazer, John
year 1995
title AN EVOLUTIONARY ARCHITECTURE
source London: Architectural Association
summary In "An Evolutionary Architecture", John Frazer presents an overview of his work for the past 30 years. Attempting to develop a theoretical basis for architecture using analogies with nature's processes of evolution and morphogenesis. Frazer's vision of the future of architecture is to construct organic buildings. Thermodynamically open systems which are more environmentally aware and sustainable physically, sociologically and economically. The range of topics which Frazer discusses is a good illustration of the breadth and depth of the evolutionary design problem. Environmental Modelling One of the first topics dealt with is the importance of environmental modelling within the design process. Frazer shows how environmental modelling is often misused or misinterpreted by architects with particular reference to solar modelling. From the discussion given it would seem that simplifications of the environmental models is the prime culprit resulting in misinterpretation and misuse. The simplifications are understandable given the amount of information needed for accurate modelling. By simplifying the model of the environmental conditions the architect is able to make informed judgments within reasonable amounts of time and effort. Unfortunately the simplications result in errors which compound and cause the resulting structures to fall short of their anticipated performance. Frazer obviously believes that the computer can be a great aid in the harnessing of environmental modelling data, providing that the same simplifying assumptions are not made and that better models and interfaces are possible. Physical Modelling Physical modelling has played an important role in Frazer's research. Leading to the construction of several novel machine readable interactive models, ranging from lego-like building blocks to beermat cellular automata and wall partitioning systems. Ultimately this line of research has led to the Universal Constructor and the Universal Interactor. The Universal Constructor The Universal Constructor features on the cover of the book. It consists of a base plug-board, called the "landscape", on top of which "smart" blocks, or cells, can be stacked vertically. The cells are individually identified and can communicate with neighbours above and below. Cells communicate with users through a bank of LEDs displaying the current state of the cell. The whole structure is machine readable and so can be interpreted by a computer. The computer can interpret the states of the cells as either colour or geometrical transformations allowing a wide range of possible interpretations. The user interacts with the computer display through direct manipulation of the cells. The computer can communicate and even direct the actions of the user through feedback with the cells to display various states. The direct manipulation of the cells encourages experimentation by the user and demonstrates basic concepts of the system. The Universal Interactor The Universal Interactor is a whole series of experimental projects investigating novel input and output devices. All of the devices speak a common binary language and so can communicate through a mediating central hub. The result is that input, from say a body-suit, can be used to drive the out of a sound system or vice versa. The Universal Interactor opens up many possibilities for expression when using a CAD system that may at first seem very strange.However, some of these feedback systems may prove superior in the hands of skilled technicians than more standard devices. Imagine how a musician might be able to devise structures by playing melodies which express the character. Of course the interpretation of input in this form poses a difficult problem which will take a great deal of research to achieve. The Universal Interactor has been used to provide environmental feedback to affect the development of evolving genetic codes. The feedback given by the Universal Interactor has been used to guide selection of individuals from a population. Adaptive Computing Frazer completes his introduction to the range of tools used in his research by giving a brief tour of adaptive computing techniques. Covering topics including cellular automata, genetic algorithms, classifier systems and artificial evolution. Cellular Automata As previously mentioned Frazer has done some work using cellular automata in both physical and simulated environments. Frazer discusses how surprisingly complex behaviour can result from the simple local rules executed by cellular automata. Cellular automata are also capable of computation, in fact able to perform any computation possible by a finite state machine. Note that this does not mean that cellular automata are capable of any general computation as this would require the construction of a Turing machine which is beyond the capabilities of a finite state machine. Genetic Algorithms Genetic algorithms were first presented by Holland and since have become a important tool for many researchers in various areas.Originally developed for problem-solving and optimization problems with clearly stated criteria and goals. Frazer fails to mention one of the most important differences between genetic algorithms and other adaptive problem-solving techniques, ie. neural networks. Genetic algorithms have the advantage that criteria can be clearly stated and controlled within the fitness function. The learning by example which neural networks rely upon does not afford this level of control over what is to be learned. Classifier Systems Holland went on to develop genetic algorithms into classifier systems. Classifier systems are more focussed upon the problem of learning appropriate responses to stimuli, than searching for solutions to problems. Classifier systems receive information from the environment and respond according to rules, or classifiers. Successful classifiers are rewarded, creating a reinforcement learning environment. Obviously, the mapping between classifier systems and the cybernetic view of organisms sensing, processing and responding to environmental stimuli is strong. It would seem that a central process similar to a classifier system would be appropriate at the core of an organic building. Learning appropriate responses to environmental conditions over time. Artificial Evolution Artificial evolution traces it's roots back to the Biomorph program which was described by Dawkins in his book "The Blind Watchmaker". Essentially, artificial evolution requires that a user supplements the standard fitness function in genetic algorithms to guide evolution. The user may provide selection pressures which are unquantifiable in a stated problem and thus provide a means for dealing ill-defined criteria. Frazer notes that solving problems with ill-defined criteria using artificial evolution seriously limits the scope of problems that can be tackled. The reliance upon user interaction in artificial evolution reduces the practical size of populations and the duration of evolutionary runs. Coding Schemes Frazer goes on to discuss the encoding of architectural designs and their subsequent evolution. Introducing two major systems, the Reptile system and the Universal State Space Modeller. Blueprint vs. Recipe Frazer points out the inadequacies of using standard "blueprint" design techniques in developing organic structures. Using a "recipe" to describe the process of constructing a building is presented as an alternative. Recipes for construction are discussed with reference to the analogous process description given by DNA to construct an organism. The Reptile System The Reptile System is an ingenious construction set capable of producing a wide range of structures using just two simple components. Frazer saw the advantages of this system for rule-based and evolutionary systems in the compactness of structure descriptions. Compactness was essential for the early computational work when computer memory and storage space was scarce. However, compact representations such as those described form very rugged fitness landscapes which are not well suited to evolutionary search techniques. Structures are created from an initial "seed" or minimal construction, for example a compact spherical structure. The seed is then manipulated using a series of processes or transformations, for example stretching, shearing or bending. The structure would grow according to the transformations applied to it. Obviously, the transformations could be a predetermined sequence of actions which would always yield the same final structure given the same initial seed. Alternatively, the series of transformations applied could be environmentally sensitive resulting in forms which were also sensitive to their location. The idea of taking a geometrical form as a seed and transforming it using a series of processes to create complex structures is similar in many ways to the early work of Latham creating large morphological charts. Latham went on to develop his ideas into the "Mutator" system which he used to create organic artworks. Generalising the Reptile System Frazer has proposed a generalised version of the Reptile System to tackle more realistic building problems. Generating the seed or minimal configuration from design requirements automatically. From this starting point (or set of starting points) solutions could be evolved using artificial evolution. Quantifiable and specific aspects of the design brief define the formal criteria which are used as a standard fitness function. Non-quantifiable criteria, including aesthetic judgments, are evaluated by the user. The proposed system would be able to learn successful strategies for satisfying both formal and user criteria. In doing so the system would become a personalised tool of the designer. A personal assistant which would be able to anticipate aesthetic judgements and other criteria by employing previously successful strategies. Ultimately, this is a similar concept to Negroponte's "Architecture Machine" which he proposed would be computer system so personalised so as to be almost unusable by other people. The Universal State Space Modeller The Universal State Space Modeller is the basis of Frazer's current work. It is a system which can be used to model any structure, hence the universal claim in it's title. The datastructure underlying the modeller is a state space of scaleless logical points, called motes. Motes are arranged in a close-packing sphere arrangement, which makes each one equidistant from it's twelve neighbours. Any point can be broken down into a self-similar tetrahedral structure of logical points. Giving the state space a fractal nature which allows modelling at many different levels at once. Each mote can be thought of as analogous to a cell in a biological organism. Every mote carries a copy of the architectural genetic code in the same way that each cell within a organism carries a copy of it's DNA. The genetic code of a mote is stored as a sequence of binary "morons" which are grouped together into spatial configurations which are interpreted as the state of the mote. The developmental process begins with a seed. The seed develops through cellular duplication according to the rules of the genetic code. In the beginning the seed develops mainly in response to the internal genetic code, but as the development progresses the environment plays a greater role. Cells communicate by passing messages to their immediate twelve neighbours. However, it can send messages directed at remote cells, without knowledge of it's spatial relationship. During the development cells take on specialised functions, including environmental sensors or producers of raw materials. The resulting system is process driven, without presupposing the existence of a construction set to use. The datastructure can be interpreted in many ways to derive various phenotypes. The resulting structure is a by-product of the cellular activity during development and in response to the environment. As such the resulting structures have much in common with living organisms which are also the emergent result or by-product of local cellular activity. Primordial Architectural Soups To conclude, Frazer presents some of the most recent work done, evolving fundamental structures using limited raw materials, an initial seed and massive feedback. Frazer proposes to go further and do away with the need for initial seed and start with a primordial soup of basic architectural concepts. The research is attempting to evolve the starting conditions and evolutionary processes without any preconditions. Is there enough time to evolve a complex system from the basic building blocks which Frazer proposes? The computational complexity of the task being embarked upon is not discussed. There is an implicit assumption that the "superb tactics" of natural selection are enough to cut through the complexity of the task. However, Kauffman has shown how self-organisation plays a major role in the early development of replicating systems which we may call alive. Natural selection requires a solid basis upon which it can act. Is the primordial soup which Frazer proposes of the correct constitution to support self-organisation? Kauffman suggests that one of the most important attributes of a primordial soup to be capable of self-organisation is the need for a complex network of catalysts and the controlling mechanisms to stop the reactions from going supracritical. Can such a network be provided of primitive architectural concepts? What does it mean to have a catalyst in this domain? Conclusion Frazer shows some interesting work both in the areas of evolutionary design and self-organising systems. It is obvious from his work that he sympathizes with the opinions put forward by Kauffman that the order found in living organisms comes from both external evolutionary pressure and internal self-organisation. His final remarks underly this by paraphrasing the words of Kauffman, that life is always to found on the edge of chaos. By the "edge of chaos" Kauffman is referring to the area within the ordered regime of a system close to the "phase transition" to chaotic behaviour. Unfortunately, Frazer does not demonstrate that the systems he has presented have the necessary qualities to derive useful order at the edge of chaos. He does not demonstrate, as Kauffman does repeatedly, that there exists a "phase transition" between ordered and chaotic regimes of his systems. He also does not make any studies of the relationship of useful forms generated by his work to phase transition regions of his systems should they exist. If we are to find an organic architecture, in more than name alone, it is surely to reside close to the phase transition of the construction system of which is it built. Only there, if we are to believe Kauffman, are we to find useful order together with environmentally sensitive and thermodynamically open systems which can approach the utility of living organisms.
series other
type normal paper
last changed 2004/05/22 12:12

_id 695f
authors Galle, P.
year 1995
title Towards integrated, intelligent, and compliant computer modeling of buildings
source Automation in Construction 4 (3) (1995) pp. 189-211
summary This paper is a survey of current research into computer modeling of buildings. Just as much, however, it is a contribution to a debate on the future of this field of research (and as such expresses the author's opinions, rather than mere facts). It is suggested that more research should be conducted in a top-down "'problem-driven" (rather than in a bottom-up. "technology-driven") manner. As the goal of future research, ten desirable system properties are proposed and grouped together under three headings: integration. intelligence", and compliance. A critical survey of the current state-of-the-art of computer modeling of buildings is given, to assess how far we are from systems with such properties. On that background problems are discussed which are major obstacles to the proposed kind of systems (hence good starting points lot problem-driven research and some ways of approaching these problems are briefly evaluated.
keywords Computer Modeling of Buildings; Product Modeling: Computer Aided Building Design; Critical Survey; Goal-Setting Debate; Concurrency Control: Integrity Constraint Management; Representation; Complexity of Representations
series journal paper
more http://www.elsevier.com/locate/autcon
last changed 2003/05/15 12:47

_id 1778
authors Jo, Jun H. and Gero, John S.
year 1995
title Representation and Use of Design Knowledge in Evolutionary Design
source Sixth International Conference on Computer-Aided Architectural Design Futures [ISBN 9971-62-423-0] Singapore, 24-26 September 1995, pp. 189-203
summary This paper describes an approach to knowledge representation for an evolutionary design process. The concept of design schemas is introduced to provide the representational framework for design knowledge. Two kinds of design schemas, the design rule schema and the design gene schema, are proposed to formulate design knowledge and interpret the knowledge into genetic codes. A design problem which is used to exemplify this approach is that of a large office layout planning problem.
keywords Representation, Design Knowledge, Genetic Codes
series CAAD Futures
email john@arch.usyd.edu.au
last changed 2003/05/16 18:58

_id c675
authors Kim, Inham
year 1995
title Design Tools Integration in an Integrated Design Environment
source Computing in Design - Enabling, Capturing and Sharing Ideas [ACADIA Conference Proceedings / ISBN 1-880250-04-7] University of Washington (Seattle, Washington / USA) October 19-22, 1995, pp. 75-95
summary The design problem has a multi-disciplinary nature and the design itself evolves as solutions are attempted by the designer. To support inter-disciplinary communication of design concepts and decisions, the integration of relevant CAAD tools is essential. Based upon a large set of design criteria and all corresponding knowledge, with the help of computer aided design tools, the result could be highly effective and novel. The integration of CAAD tools should be performed on the basis of generating better solutions by enabling designers to manipulate and appraise various solutions quickly and with a minimum of effort. The proposed system provides the foundations for a seamless and continuous working environment for architects and building engineers through a data modelling module, an integrated data management framework and various design tools. In the environment, stand-alone design tools can be plugged-in in order to access information stored in central databases. The suggested data modelling module helps integrated CAAD systems represent and exchange domain dependent design information at a semantic level, such as exchanging components and features of a building rather than graphical primitives. The suggested data management framework supports the straight-forward mechanisms for controlling the data representation through the inter-connected modules and design tools.
series ACADIA
last changed 1999/03/29 14:59

_id a0e2
authors Kim, Inhan and Liebich, Thomas
year 1995
title Representations and Control of Design Information in an Integrated CAAD Environment
source Sixth International Conference on Computer-Aided Architectural Design Futures [ISBN 9971-62-423-0] Singapore, 24-26 September 1995, pp. 125-138
summary This paper investigates the mechanisms by which effective data communication between the various design stages and design actors may be facilitated in an Integrated Design Environment. The design team would then be able to cooperate efficiently and easily predict the performance of buildings, thus improving the quality of the design. Within the proposed prototype design environment, a core data model and a data management system have been implemented to connect all applications seamlessly. The core data model supports semantically meaningful descriptions of buildings. The data management system supports consistent and straightforward mechanisms for controlling the data representation through interconnected modules. An existing building is used to test the integration capability of the implemented system.###Product Modelling,.Object-Oriented Database System
series CAAD Futures
email liebich@uumail.de
last changed 2003/05/16 18:58

_id 040a
authors Lam, Khee-Poh and Mahdavi, Ardeshir
year 1995
title Interface Design for Building Performance Modeling: Information Representation and Transformation
source Sixth International Conference on Computer-Aided Architectural Design Futures [ISBN 9971-62-423-0] Singapore, 24-26 September 1995, pp. 141-152
summary Building design is an integrative endeavor encompassing a multi-variate agenda that deals simultaneously with issues of architectural elements, their attributes (geometry, material properties, etc.), contextual variables (e.g., the uncontrollable external environmental conditions), and building performance variables (e.g., the potentially controllable indoor environment in terms of thermal, acoustical, visual requirements). Ultimately, an important objective of design is to create built environments that are responsive to occupant needs and building performance requirements. This paper will suggest a framework for developing appropriate representations of the complexities involved in building performance simulation. This is based on studies of the communication requirements pertaining to the informational content involved in the design process, and the interfacial relationships between various analytical components as well as between the user and the system. The applicability and effectiveness of this theoretical framework is demonstrated using the example of a fully operational hygro-thermal analysis program (META-4) developed by the authors.
keywords Interface Design, Building Performance, Modelling
series CAAD Futures
email amahdavi@tuwien.ac.at
last changed 2003/02/26 16:26

_id 2caa
authors Marinelli, Anna Maria and Graziano, Laura
year 1995
title Urban Analysis and Hypermedia
source Multimedia and Architectural Disciplines [Proceedings of the 13th European Conference on Education in Computer Aided Architectural Design in Europe / ISBN 0-9523687-1-4] Palermo (Italy) 16-18 November 1995, pp. 149-154
summary The structure of major European cities was formed in recent years more by stratification of different patterns, as it seems, than by urban planning. Moreover traditional analytical tools - such as cartography, which defines and symbolizes static data and their spatial connections - are not able to decode any more the image of cities. Modern city means not only static form, as public space is not a simple function. city includes movement, temporary objects, changing perceptions, fluxes. Therefore hypertexts could he a chance of building up and propagate a real knowledge about modern city. an effective action to reach qualification and management of urban spaces through citizens direct involvement in the city construction. A hypertext on the Rome quarter "Esquilino" has been carried out as an open structure, to probe the new representation method trough the construction of the real "image" of the quarter, gathering different information as historical, geographic and socioeconomical data, urban projects, citizens proposals.
series eCAADe
more http://dpce.ing.unipa.it/Webshare/Wwwroot/ecaade95/Pag_19.htm
last changed 2000/12/02 12:52

_id cb67
authors Paranandi, Murali
year 1995
title Roof Modeling Using Architectural Semantics Paradigm
source Computing in Design - Enabling, Capturing and Sharing Ideas [ACADIA Conference Proceedings / ISBN 1-880250-04-7] University of Washington (Seattle, Washington / USA) October 19-22, 1995, pp. 333-350
summary This paper presents an approach to developing the computer aided architectural design systems investigating architectural semantics paradigm and void modeling representation as a method. A prototypical system called FRED(Facile Roof Editor & Designer) was developed incorporating structural logic and characteristics of roof in its basic representation and its operational behavior constrained by distinct attributes of a roof. Design of Hip, Pitch, Multi-level, and Flat roofs in Solid and Shell forms was made possible by extracting from an existing building or creating them as independent entities. The implementation successfully demonstrates that incorporating architectural semantics in the basic representation of a CAD system allows architects to create and test roof morphology fairly quickly, accurately, and fluidity for ideation.
keywords Solid, Shell, Void Modeling, Architectural Semantics, Roofs, Pitch, Hip, Eaves, Ideation
series ACADIA
email paranam@muohio.edu
last changed 2003/05/16 17:23

_id cea2
authors Roe, Sharon L.
year 1995
title Investigations into the Production of Form
source Computing in Design - Enabling, Capturing and Sharing Ideas [ACADIA Conference Proceedings / ISBN 1-880250-04-7] University of Washington (Seattle, Washington / USA) October 19-22, 1995, pp. 371-382
summary Computers have exploded into the world of the architect, yet architects have only begun to explore the role of computers in the creative process or the effects of particular applications on design projects. Likewise, educators are seeking methods for investigating the computer as a tool which may or may not effect the thing produced. Is it a tool for representation (copying), or a key player in the generation of ideas—a tool for the production of form? This paper describes the theoretical foundations and results of a series of exercises developed for beginning design students. In three investigations students consider: Algorithms (the fundamental logic of a computer application) using Building blocks (reductive entities that act as the origins of form) by Collaging and making assemblies (techniques for experimentation and exploration). The purpose of these exercises (called ABC exercises) is to explore the relationship between the computer as a tool and the production of form and type in architecture.
series ACADIA
last changed 1999/03/29 15:40

_id 4688
authors Woodbury, Robert and Chang, Teng-Wen
year 1995
title Building Enclosures using SEED-Config
source Sixth International Conference on Computer-Aided Architectural Design Futures [ISBN 9971-62-423-0] Singapore, 24-26 September 1995, pp. 49-54
summary We describe enclosure design for SEED-Config using an example from "Architectural Details for Insulated Buildings" (Brand 90). We develop enclosures for insulated buildings in terms of the functional units that specify them, the technologies that implement them and the design units that describe them. Brand gives details in eight series (A-H); in each series he describes a specific detailing system. We base our exposition on series A to E: these share the property of the wall fitting partially under the roof and floor slabs. In series F and G the wall stands clear of the slabs and this would require a different approach to detailing from a very high level. Series H is a compendium of special cases that we do not discuss here at all. We conclude with a discussion of what our enclosure design example implies for the representation and computational engine of SEED-Config. We chose insulated enclosures as our example for a specific reason: Brandís treatment of them is proximate to the fundamental approach we take in SEED. Brand wrote in clear, rule-like terms that progress from the abstract to the specific. He explicitly links each part of every detail to the function it fulfills.
keywords Generative Systems, Building Enclosures, CAD, SEED, Representation, Search
series CAAD Futures
email rob_woodbury@sfu.ca
last changed 2003/05/16 18:58

_id e75d
authors Achten, H., Dijkstra, J., Oxman, R. and Bax, Th.
year 1995
title Knowledge-Based Systems Programming for Knowledge Intensive Teaching
source Multimedia and Architectural Disciplines [Proceedings of the 13th European Conference on Education in Computer Aided Architectural Design in Europe / ISBN 0-9523687-1-4] Palermo (Italy) 16-18 November 1995, pp. 139-148
summary Typological design implies extensive knowledge of building types in order to design a building belonging to a building type. It facilitates the design process, which can be considered us a sequence of decisions. The paper gives an outline of a new approach in a course teaching typological knowledge through the medium of Knowledge-Based Systems programming. It demonstrates how Knowledge-Based Systems offer an appropriate structure for analysing the knowledge required to implement typological design. The class consists of third-year undergraduate students with no extensive previous programming experience. The implementation language is AutoLISP which operates in the AutoCAD environment. The building type used in the course is the office building. in order to become acquainted with both building type and programming in AutoLISP, information and instructions have been gathered and prestructured, including a worked out analysis and AutoLISP code. Office plans are generated through use of the Knowledge-Based System. They are encoded in the form of frames. At the end of the course the students will have learned the basics of Knowledge-Based Systems, have been introduced to programming these systems, have analysed and reflected upon the design process, and gained insight into a specific building type.
series eCAADe
email h.h.achten@bwk.tue.nl
more http://dpce.ing.unipa.it/Webshare/Wwwroot/ecaade95/Pag_18.htm
last changed 2003/11/21 14:15

_id 6cb2
authors Af Klercker, Jonas
year 1995
title Architects Early Sketching on Computer Using Multimedia
source Multimedia and Architectural Disciplines [Proceedings of the 13th European Conference on Education in Computer Aided Architectural Design in Europe / ISBN 0-9523687-1-4] Palermo (Italy) 16-18 November 1995, pp. 247-256
summary This paper presents a development work which aims at practical applications of ideas built on experiences in practise and education and the theoretical development in the BAS.CAAD project. The important difference between BAS.CAAD and CAD programs of today is the possibility to handle user organisation, building design and site in the same program. This means that design today has to be done in at least 3 separate programs with different ways of defining objects. It is then a computer technical problem to mix and study the relations between objects of separate origin. In a recent project our method to overcome this difficulty in CAAD computing was using a Multimedia program making visual simulations to analyse consequences of form etc. As the process went on and forms where more concrete it was possible to make simulations worth showing and discussing to involve colleagues, clients and users.

series eCAADe
email Jonas.af_Klercker@caad.lth.se
more http://dpce.ing.unipa.it/Webshare/Wwwroot/ecaade95/Pag_51.htm
last changed 2003/11/21 14:15

_id 0c8e
authors Ager, Mark Thomas and Sinclair, Brian R.
year 1995
title StereoCAD: Three Dimensional Representation
source Sixth International Conference on Computer-Aided Architectural Design Futures [ISBN 9971-62-423-0] Singapore, 24-26 September 1995, pp. 343-355
summary Concepts of stereoscopic vision have been around for more than two thousand years. Despite this long history, its application to the field to architecture and design seems relatively unexplored. Synthesis of two technologies, the stereoscope and the computer, was the focus of the present study. The goal of the research was to determine if computer-generated stereoscopic pairs hold value for architectural design. Using readily available computer technology (Apple Macintosh) the research team modelled and rendered an existing project to verify the degree of correlation between the physical construct, the computer 3D model and resultant correlation between the physical construct, the computer 3D model and resultant rendered stereo-paired representation. The experiments performed in this study have shown that producing stereo-paired images that highly correlate to reality is possible using technology that is readily available in the marketplace. Both the technology required to produce (i.e., personal computer and modelling/rendering software) and view (i.e., modified stereoscope) the images is unimposing. Both devices can easily fit in a studio or a boardroom and together can be utilized effectively to permit designers, clients and end-users to experience proposed spaces and projects. Furthermore, these technologies are familiar (clients and end-users have already experienced them in other applications and settings) and assume a fraction of the cost of more dynamic, immersive virtual reality systems. Working from this base, limitations of the process as well as future applications of computer-generated stereoscopic images are identified.
keywords Stereovision, Representation, Computers, Architects, Design
series CAAD Futures
last changed 2003/11/21 14:15

_id 8378
authors Arlati, Ezio
year 1995
title Patriarch: A Hypermedia Environment for the Support of Architectural Design
source Multimedia and Architectural Disciplines [Proceedings of the 13th European Conference on Education in Computer Aided Architectural Design in Europe / ISBN 0-9523687-1-4] Palermo (Italy) 16-18 November 1995, pp. 187-198
summary This paper reports on current research in the field of architectural design and knowledge- based systems, through the conception and implementation of two software tools operating as a part of an integrated hypermedia environment denominated PatriArch. Main concern of this set of tools operating in PatriArch is the support of design since the very beginning, in that phase of not yet correctly explored or interpretated constraints and of scarcely specified goals, in which an initial solution model - provisionally composed of fragments of supposed fitting ideas - for the design theme has to take place. The creative activity of the designer is assumed as an 'intentional planning activity' that represents the acquired level of knowledge of the network of connections defining the nature, function, shape in the space etc. of the increasingly integrated solution-model: the final design will be an evolution of this - and other competitive and concurrent - models. PatriArch is meant to be the environment containing and allowing the representation of this evolution through its ability of linking the fragments of designers' knowledge, supported by an integrated relational data base: Sysinfo. These works were conceived inside an educational software development program for architecture students.

series eCAADe
more http://dpce.ing.unipa.it/Webshare/Wwwroot/ecaade95/Pag_25.htm
last changed 2003/11/21 14:16

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 19HOMELOGIN (you are user _anon_156474 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002