CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 495

_id cabb
authors Broughton, T., Tan, A. and Coates, P.S.
year 1997
title The Use of Genetic Programming In Exploring 3D Design Worlds - A Report of Two Projects by Msc Students at CECA UEL
source CAAD Futures 1997 [Conference Proceedings / ISBN 0-7923-4726-9] München (Germany), 4-6 August 1997, pp. 885-915
summary Genetic algorithms are used to evolve rule systems for a generative process, in one case a shape grammar,which uses the "Dawkins Biomorph" paradigm of user driven choices to perform artificial selection, in the other a CA/Lindenmeyer system using the Hausdorff dimension of the resultant configuration to drive natural selection. (1) Using Genetic Programming in an interactive 3D shape grammar. A report of a generative system combining genetic programming (GP) and 3D shape grammars. The reasoning that backs up the basis for this work depends on the interpretation of design as search In this system, a 3D form is a computer program made up of functions (transformations) & terminals (building blocks). Each program evaluates into a structure. Hence, in this instance a program is synonymous with form. Building blocks of form are platonic solids (box, cylinder, etc.). A Variety of combinations of the simple affine transformations of translation, scaling, rotation together with Boolean operations of union, subtraction and intersection performed on the building blocks generate different configurations of 3D forms. Using to the methodology of genetic programming, an initial population of such programs are randomly generated,subjected to a test for fitness (the eyeball test). Individual programs that have passed the test are selected to be parents for reproducing the next generation of programs via the process of recombination. (2) Using a GA to evolve rule sets to achieve a goal configuration. The aim of these experiments was to build a framework in which a structure's form could be defined by a set of instructions encoded into its genetic make-up. This was achieved by combining a generative rule system commonly used to model biological growth with a genetic algorithm simulating the evolutionary process of selection to evolve an adaptive rule system capable of replicating any preselected 3D shape. The generative modelling technique used is a string rewriting Lindenmayer system the genes of the emergent structures are the production rules of the L-system, and the spatial representation of the structures uses the geometry of iso-spatial dense-packed spheres
series CAAD Futures
email p.s.coates@btinternet.com
last changed 2003/11/21 14:16

_id 2483
authors Gero, J.S. and Kazakov, V.
year 1997
title Learning and reusing information in space layout problems using genetic engineering
source Artificial Intelligence in Engineering 11(3):329-334
summary The paper describes the application of a genetic engineering based extension to genetic algorithms to the layout planning problem. We study the gene evolution which takes place when an algorithm of this type is running and demonstrate that in many cases it effectively leads to the partial decomposition of the layout problem by grouping some activit ies together and optimally placing these groups during the first stage of the computation. At a second stage it optimally places activities within these groups. We show that the algorithm finnds the solution faster than standard evolutionary methods and that evolved genes represent design features that can be re-used later in a range of similar problems.
keywords Genetic Engineering, Learning
series other
email john@arch.usyd.edu.au
last changed 2001/09/08 10:04

_id c0da
authors Gero, J.S., Kazakov, V. and Schnier, T.
year 1997
title Genetic engineering and design problems
source D. Dasgupta and Z. Michalewicz (Eds.), Evolutionary Algorithms in Engineering Applications, Springer Verlag, Berlin, pp.47-68
summary This chapter reviews developments in genetic algorithms based on genetic engineering extensions. It presents the development a computational model of genetic engineering and demonstrates its applicability and utility.
keywords Genetic Engineering, Learning
series other
email john@arch.usyd.edu.au
last changed 2003/04/06 05:18

_id ga9921
id ga9921
authors Coates, P.S. and Hazarika, L.
year 1999
title The use of genetic programming for applications in the field of spatial composition
source International Conference on Generative Art
summary Architectural design teaching using computers has been a preoccupation of CECA since 1991. All design tutors provide their students with a set of models and ways to form, and we have explored a set of approaches including cellular automata, genetic programming ,agent based modelling and shape grammars as additional tools with which to explore architectural ( and architectonic) ideas.This paper discusses the use of genetic programming (G.P.) for applications in the field of spatial composition. CECA has been developing the use of Genetic Programming for some time ( see references ) and has covered the evolution of L-Systems production rules( coates 1997, 1999b), and the evolution of generative grammars of form (Coates 1998 1999a). The G.P. was used to generate three-dimensional spatial forms from a set of geometrical structures .The approach uses genetic programming with a Genetic Library (G.Lib) .G.P. provides a way to genetically breed a computer program to solve a problem.G. Lib. enables genetic programming to define potentially useful subroutines dynamically during a run .* Exploring a shape grammar consisting of simple solid primitives and transformations. * Applying a simple fitness function to the solid breeding G.P.* Exploring a shape grammar of composite surface objects. * Developing grammarsfor existing buildings, and creating hybrids. * Exploring the shape grammar of abuilding within a G.P.We will report on new work using a range of different morphologies ( boolean operations, surface operations and grammars of style ) and describe the use of objective functions ( natural selection) and the "eyeball test" ( artificial selection) as ways of controlling and exploring the design spaces thus defined.
series other
more http://www.generativeart.com/
last changed 2003/08/07 15:25

_id 6112
authors Daru, Roel and Snijder, H.P.S.
year 1997
title GACAAD or AVOCAAD? CAAD and Genetic Algorithms for an Evolutionary Design Paradigm
source AVOCAAD First International Conference [AVOCAAD Conference Proceedings / ISBN 90-76101-01-09] Brussels (Belgium) 10-12 April 1997, pp. 145-161
summary One of the dominant paradigms in architecture is about its creation: it is done by human designers supported by tools like sketching, drawing or modelling and evaluation tools. The Darwinistic paradigm demands a paradigmatic switch from drawing, modelling and evaluation to the breeding of forms with a much more integrated generation and selecting process embedded in the computer machinery. This means a paradigm switch from a designer as the performer of (sketch, draw or modelling) work to a machine driven creation and selection process of forms with the designer as the supervisor, fully entitled to steer the process in some preferred directions. The designer creates by establishing the evolutionary rules and making choices among the architectural creatures emerging in rapid fire modethrough the synthesis performed by the machine. Natural selection is a Metaphor: in fact the designer plays Nature (or God). The creatures allowed to flourish are not adequate according to laws of Nature, but to the judgement of the designer (or to the designing team).
series AVOCAAD
last changed 2005/09/09 08:48

_id b5f4
authors Gero, John S. and Ding, Lan
year 1997
title Exploring Style Emergence in Architectural Designs
source CAADRIA ‘97 [Proceedings of the Second Conference on Computer Aided Architectural Design Research in Asia / ISBN 957-575-057-8] Taiwan 17-19 April 1997, pp. 287-296
summary This paper presents an evolutionary approach to style emergence in architectural designs. Emergence is the process of making features explicit which were previously only implicit. Style is considered as a set of common characteristics of a group of designs. It is interpreted using a language model as an analogy and is represented at the genetic level. An evolutionary system based on genetic engineering is developed. It emerges style by locating the genetic structures which produce that style. Preliminary results are presented.
series other
email john@arch.usyd.edu.au
last changed 2003/04/06 07:26

_id dba1
authors Hirschberg, Urs and Wenz, Florian
year 2000
title Phase(x) - memetic engineering for architecture
source Automation in Construction 9 (4) (2000) pp. 387-392
summary Phase(x) was a successful teaching experiment we made in our entry level CAAD course in the Wintersemester 1996/1997. The course was entirely organized by means of a central database that managed all the students' works through different learning phases. This set-up allowed that the results of one phase and one author be taken as the starting point for the work in the next phase by a different author. As students could choose which model they wanted to work with, the whole of Phase(x) could be viewed as an organism where, as in a genetic system, only the "fittest" works survived. While some discussion of the technical set-up is necessary as a background, the main topics addressed in this paper will be the structuring in phases of the course, the experiences we had with collective authorship, and the observations we made about the memes2 that developed and spread in the students' works. Finally we'll draw some conclusions in how far Phase(x) is relevant also in a larger context, which is not limited to teaching CAAD. Since this paper was first published in 1997, we have continued to explore the issues described here in various projects3 together with a growing number of other interested institutions worldwide. While leaving the paper essentially in its original form, we added a section at the end, in which we outline some of these recent developments.
series journal paper
more http://www.elsevier.com/locate/autcon
last changed 2003/05/15 19:22

_id a5a3
authors Jagielski, Romuald and Gero, John S.
year 1997
title A Genetic Programming Approach to the Space Layout Planning Problem
source CAAD Futures 1997 [Conference Proceedings / ISBN 0-7923-4726-9] München (Germany), 4-6 August 1997, pp. 875-884
summary The space layout planning problem belongs to the class of NP-hard problems with a wide range of practical applications. Many algorithms have been developed in the past, however recently evolutionary techniques have emerged as an alternative approach to their solution. In this paper, a genetic programming approach, one variation of evolutionary computation, is discussed. A representation of the space layout planning problem suitable for genetic programming is presented along with some implementation details and results.
series CAAD Futures
email john@arch.usyd.edu.au
last changed 2003/02/23 10:00

_id 6707
authors Jakimowicz, A., Barrallo, J. and Guedes, E.M.
year 1997
title Spatial Computer Abstraction: From Intuition to Genetic Algorithms
source CAAD Futures 1997 [Conference Proceedings / ISBN 0-7923-4726-9] München (Germany), 4-6 August 1997, pp. 917-926
summary Many of the emblematic buildings constructed at present shows many formal and technological innovations that have not been satisfactorily resolved by the existing CAAD software. Frank 0. Gehry's Guggenheim Museum in Bilbao is a good example of architecture whose shapes and design are very advanced from the concepts and tools used by CAAD. The search for new creative resources, from the educational and professional point of view, must be a priority. This will be the only way to get that CAAD contributes essentially in the process of architectural innovation, instead of merely being a reproduction tool. From this viewpoint the computer exploration of the three dimensional form is presented in here. The concept of abstract art, that has been successfully applied to painting and sculpture in this century is used as a way to experiment, design and create architecture. This paper juxtaposes three approaches, three different ways of understanding the abstract character, with the purpose to create new objects and environments, which are exclusively characteristic for computer space. This juxtaposition shows how creative and innovative activities in the field of CAAD can be developed using different intellectual bases: intuition, mathematical formulas and genetic algorithms.
series CAAD Futures
email jakima@cksr.ac.bialystok.pl
last changed 1999/04/06 07:19

_id cc51
authors Schnier, T. and Gero, J.S
year 1997
title Dominant and recessive genes in evolutionary systems applied to spatial reasoning
source A. Sattar (Ed.), Advanced Topics in Artificial Intelligence: 10th Australian Joint Conference on Artificial Intelligence AI97 Proceedings, Springer, Heidelberg, pp. 127-136
summary Learning genetic representation has been shown to be a useful tool in evolutionary computation. It can reduce the time required to find solutions and it allows the search process to be biased towards more desirable solutions. Learn-ing genetic representation involves the bottom-up creation of evolved genes from either original (basic) genes or from other evolved genes and the introduction of those into the population. The evolved genes effectively protect combinations of genes that have been found useful from being disturbed by the genetic operations (cross-over, mutation). However, this protection can rapidly lead to situations where evolved genes in-terlock in such a way that few or no genetic operations are possible on some genotypes. To prevent the interlocking previous implementations only allow the creation of evolved genes from genes that are direct neighbours on the genotype and therefore form continuous blocks. In this paper it is shown that the notion of dominant and recessive genes can be used to remove this limitation. Using more than one gene at a single location makes it possible to construct genetic operations that can separate interlocking evolved genes. This allows the use of non-continuous evolved genes with only minimal violations of the protection of evolved genes from those operations. As an example, this paper shows how evolved genes with dominant and re-cessive genes can be used to learn features from a set of Mondrian paintings. The representation can then be used to create new designs that contain features of the examples. The Mondrian paintings can be coded as a tree, where every node represents a rectangle division, with values for direction, position, line-width and colour. The modified evolutionary operations allow the system to cre-ate non-continuous evolved genes, for example associate two divisions with thin lines, without specifying other values. Analysis of the behaviour of the system shows that about one in ten genes is a dominant/recessive gene pair. This shows that while dominant and recessive genes are important to allow the use of non-continuous evolved genes, they do not occur often enough to seriously violate the protection of evolved genes from genetic operations.
keywords Evolutionary Systems, Genetic Representations
series other
email john@arch.usyd.edu.au
last changed 2003/04/06 05:24

_id 6e46
authors Wenz, Florian and Hirschberg, Urs
year 1997
title Phase(x) - Memetic Engineering for ArchitectureArchitecture
source Challenges of the Future [15th eCAADe Conference Proceedings / ISBN 0-9523687-3-0] Vienna (Austria) 17-20 September 1997
summary Phase(x) was a successful teaching experiment we made in our entry level CAAD course in the Wintersemester 1996/97. The course was entirely organized by means of a central database that managed all the students' works through different learning phases. This setup allowed that the results of one phase and one author be taken as the starting point for the work in the next phase by a different author. As students could choose which model they wanted to work with, the whole of Phase(x) could be viewed as an organism where, as in a genetic system, only the "fittest" works survived.

While some discussion of the technical set-up is necessary as a background, the main topics addressed in this paper will be the structuring in phases of the course, the experiences we had with collective authorship, and the observations we made about the memes hat developed and spread in the students' works. Finally we'll draw some conclusions in how far Phase(x) is relevant also in a larger context, that is not limited to teaching CAAD.

keywords memetic process, collaborative creative work, collective authorship, caad education
series eCAADe
email wenz@arch.ethz.ch
more http://info.tuwien.ac.at/ecaade/proc/wenz/wenz.htm
last changed 2001/08/17 13:11

_id 9e13
authors Seward, D.W., Scott, J.N., Dixon, R., Findlay, J.D. and Kinniburgh, H.
year 1997
title The automation of piling rig positioning using satellite GPS
source Automation in Construction 6 (3) (1997) pp. 229-240
summary The paper is divided in two parts. Part one describes the Stent Automatic Pile Positioning and Recording system (SAPPAR) which was launched in November 1994. The system utilises a Trimble satellite global positioning system (GPS) to assist rig drivers in accurately positioning the rig over a pile position without the need for setting out. Advantages of the system include: cost savings by removing the need for site survey staff; faster set-up times over pile positions; increased accuracy - the system can reliably position the rig to within ± 25 mm; removal of problems resulting from damage to setting out pins; constant monitoring of pile position; and Links to CAD for data input and as-built drawings. Part two describes a further development of the system in collaboration with Lancaster University and Casagrande, the Italian rig manufacturer. The aim of the research is to fully automate the final positioning process. This represents one of the first uses of GPS for real-time automation. The system hardware components include: ultra-compact PC104 processor cards for a compact and robust embedded system; minimum sensing on the rig to minimise cost and maximise robustness; and limit sensors to facilitate on-board safety. The control algorithms were developed on a fifth-scale model in the laboratory using an innovative and new approach to the design of model based control systems. The importance of careful consideration of safety issues is stressed and conclusions are drawn based on the early findings from preliminary field trials.
series journal paper
more http://www.elsevier.com/locate/autcon
last changed 2003/05/15 19:23

_id 9748
authors Trikac, S.N., Banerjeea, P. and Kashyapb, R.L.
year 1997
title Virtual reality interfaces for feature-based computer-aided design systems
source Computer-Aided Design, Vol. 29 (8) (1997) pp. 565-574
summary A computer-aided design (CAD) system with a virtual reality (VR) interface simplifies the design of complex mechanical parts. To add a design feature (e.g., a hole,slot, or protrusion), the designer can navigate in the part to the appropriate face of the part where he/she wishes to attach the feature, and sketch directly on that face.Besides convenience, this method of feature specification implicitly enforces feature accessibility constraints, and also provides hints to the process-planner regardingthe order in which the features may be manufactured. We detail the design of a VR-based prototype CAD system. The system maintains the knowledge of part cavitiesand their adjacencies, and a triangulated boundary-representation of an approximating polyhedron. We present incremental provably correct algorithms for updatingthis representation as the user edits the part. We also show how this representation supports real-time displays, navigation, and collision detection. The user-interfaceof the CAD system relies on these capabilities to provide the above-mentioned advantages.
keywords User Interfaces, Virtual Reality, Feature-Based Design, Geometric Reasoning, Feature Extraction
series journal paper
last changed 2003/05/15 19:33

_id d97a
authors Arkin, H.
year 1997
title Introduction
source Automation in Construction 6 (5-6) (1997) pp. 379-380
summary The term ‚Intelligenz Vuilding‘ is not any longer a mere slogan used by smart salesmen of commercial and / or office buildings. During recent years it has come to describe a broad engineering concept for building design, construcions and operation, the realization of which challenges architects and engineers involved in the various aspects of building industry. The concept empasizes a multidisciplinary effort to integrate and potimize the building strctures, systems , services and management in order to create a productive and responsive environment for teh building occupant, in a cost-effective manner.
series journal paper
more http://www.elsevier.com/locate/autcon
last changed 2003/05/15 19:22

_id sigradi2006_e131c
id sigradi2006_e131c
authors Ataman, Osman
year 2006
title Toward New Wall Systems: Lighter, Stronger, Versatile
source SIGraDi 2006 - [Proceedings of the 10th Iberoamerican Congress of Digital Graphics] Santiago de Chile - Chile 21-23 November 2006, pp. 248-253
summary Recent developments in digital technologies and smart materials have created new opportunities and are suggesting significant changes in the way we design and build architecture. Traditionally, however, there has always been a gap between the new technologies and their applications into other areas. Even though, most technological innovations hold the promise to transform the building industry and the architecture within, and although, there have been some limited attempts in this area recently; to date architecture has failed to utilize the vast amount of accumulated technological knowledge and innovations to significantly transform the industry. Consequently, the applications of new technologies to architecture remain remote and inadequate. One of the main reasons of this problem is economical. Architecture is still seen and operated as a sub-service to the Construction industry and it does not seem to be feasible to apply recent innovations in Building Technology area. Another reason lies at the heart of architectural education. Architectural education does not follow technological innovations (Watson 1997), and that “design and technology issues are trivialized by their segregation from one another” (Fernandez 2004). The final reason is practicality and this one is partially related to the previous reasons. The history of architecture is full of visions for revolutionizing building technology, ideas that failed to achieve commercial practicality. Although, there have been some adaptations in this area recently, the improvements in architecture reflect only incremental progress, not the significant discoveries needed to transform the industry. However, architectural innovations and movements have often been generated by the advances of building materials, such as the impact of steel in the last and reinforced concrete in this century. There have been some scattered attempts of the creation of new materials and systems but currently they are mainly used for limited remote applications and mostly for aesthetic purposes. We believe a new architectural material class is needed which will merge digital and material technologies, embedded in architectural spaces and play a significant role in the way we use and experience architecture. As a principle element of architecture, technology has allowed for the wall to become an increasingly dynamic component of the built environment. The traditional connotations and objectives related to the wall are being redefined: static becomes fluid, opaque becomes transparent, barrier becomes filter and boundary becomes borderless. Combining smart materials, intelligent systems, engineering, and art can create a component that does not just support and define but significantly enhances the architectural space. This paper presents an ongoing research project about the development of new class of architectural wall system by incorporating distributed sensors and macroelectronics directly into the building environment. This type of composite, which is a representative example of an even broader class of smart architectural material, has the potential to change the design and function of an architectural structure or living environment. As of today, this kind of composite does not exist. Once completed, this will be the first technology on its own. We believe this study will lay the fundamental groundwork for a new paradigm in surface engineering that may be of considerable significance in architecture, building and construction industry, and materials science.
keywords Digital; Material; Wall; Electronics
series SIGRADI
email oataman@uiuc.edu
last changed 2016/03/10 08:47

_id 7a20
id 7a20
authors Carrara, G., Fioravanti, A.
year 2002
title SHARED SPACE’ AND ‘PUBLIC SPACE’ DIALECTICS IN COLLABORATIVE ARCHITECTURAL DESIGN.
source Proceedings of Collaborative Decision-Support Systems Focus Symposium, 30th July, 2002; under the auspices of InterSymp-2002, 14° International Conference on Systems Research, Informatics and Cybernetics, 2002, Baden-Baden, pg. 27-44.
summary The present paper describes on-going research on Collaborative Design. The proposed model, the resulting system and its implementation refer mainly to architectural and building design in the modes and forms in which it is carried on in advanced design firms. The model may actually be used effectively also in other environments. The research simultaneously pursues an integrated model of the: a) structure of the networked architectural design process (operators, activities, phases and resources); b) required knowledge (distributed and functional to the operators and the process phases). The article focuses on the first aspect of the model: the relationship that exists among the various ‘actors’ in the design process (according to the STEP-ISO definition, Wix, 1997) during the various stages of its development (McKinney and Fischer, 1998). In Collaborative Design support systems this aspect touches on a number of different problems: database structure, homogeneity of the knowledge bases, the creation of knowledge bases (Galle, 1995), the representation of the IT datum (Carrara et al., 1994; Pohl and Myers, 1994; Papamichael et al., 1996; Rosenmann and Gero, 1996; Eastman et al., 1997; Eastman, 1998; Kim, et al., 1997; Kavakli, 2001). Decision-making support and the relationship between ‘private’ design space (involving the decisions of the individual design team) and the ‘shared’ design space (involving the decisions of all the design teams, Zang and Norman, 1994) are the specific topic of the present article.

Decisions taken in the ‘private design space’ of the design team or ‘actor’ are closely related to the type of support that can be provided by a Collaborative Design system: automatic checks performed by activating procedures and methods, reporting of 'local' conflicts, methods and knowledge for the resolution of ‘local’ conflicts, creation of new IT objects/ building components, who the objects must refer to (the ‘owner’), 'situated' aspects (Gero and Reffat, 2001) of the IT objects/building components.

Decisions taken in the ‘shared design space’ involve aspects that are typical of networked design and that are partially present in the ‘private’ design space. Cross-checking, reporting of ‘global’ conflicts to all those concerned, even those who are unaware they are concerned, methods for their resolution, the modification of data structure and interface according to the actors interacting with it and the design phase, the definition of a 'dominus' for every IT object (i.e. the decision-maker, according to the design phase and the creation of the object). All this is made possible both by the model for representing the building (Carrara and Fioravanti, 2001), and by the type of IT representation of the individual building components, using the methods and techniques of Knowledge Engineering through a structured set of Knowledge Bases, Inference Engines and Databases. The aim is to develop suitable tools for supporting integrated Process/Product design activity by means of a effective and innovative representation of building entities (technical components, constraints, methods) in order to manage and resolve conflicts generated during the design activity.

keywords Collaborative Design, Architectural Design, Distributed Knowledge Bases, ‘Situated’ Object, Process/Product Model, Private/Shared ‘Design Space’, Conflict Reduction.
series other
type symposium
email antonio.fioravanti@uniroma1.it
last changed 2005/03/30 14:25

_id 6279
id 6279
authors Carrara, G.; Fioravanti, A.
year 2002
title Private Space' and ‘Shared Space’ Dialectics in Collaborative Architectural Design
source InterSymp 2002 - 14th International Conference on Systems Research, Informatics and Cybernetics (July 29 - August 3, 2002), pp 28-44.
summary The present paper describes on-going research on Collaborative Design. The proposed model, the resulting system and its implementation refer mainly to architectural and building design in the modes and forms in which it is carried on in advanced design firms. The model may actually be used effectively also in other environments. The research simultaneously pursues an integrated model of the: a) structure of the networked architectural design process (operators, activities, phases and resources); b) required knowledge (distributed and functional to the operators and the process phases). The article focuses on the first aspect of the model: the relationship that exists among the various ‘actors’ in the design process (according to the STEP-ISO definition, Wix, 1997) during the various stages of its development (McKinney and Fischer, 1998). In Collaborative Design support systems this aspect touches on a number of different problems: database structure, homogeneity of the knowledge bases, the creation of knowledge bases (Galle, 1995), the representation of the IT datum (Carrara et al., 1994; Pohl and Myers, 1994; Papamichael et al., 1996; Rosenmann and Gero, 1996; Eastman et al., 1997; Eastman, 1998; Kim, et al., 1997; Kavakli, 2001). Decision-making support and the relationship between ‘private’ design space (involving the decisions of the individual design team) and the ‘shared’ design space (involving the decisions of all the design teams, Zang and Norman, 1994) are the specific topic of the present article.

Decisions taken in the ‘private design space’ of the design team or ‘actor’ are closely related to the type of support that can be provided by a Collaborative Design system: automatic checks performed by activating procedures and methods, reporting of 'local' conflicts, methods and knowledge for the resolution of ‘local’ conflicts, creation of new IT objects/ building components, who the objects must refer to (the ‘owner’), 'situated' aspects (Gero and Reffat, 2001) of the IT objects/building components.

Decisions taken in the ‘shared design space’ involve aspects that are typical of networked design and that are partially present in the ‘private’ design space. Cross-checking, reporting of ‘global’ conflicts to all those concerned, even those who are unaware they are concerned, methods for their resolution, the modification of data structure and interface according to the actors interacting with it and the design phase, the definition of a 'dominus' for every IT object (i.e. the decision-maker, according to the design phase and the creation of the object). All this is made possible both by the model for representing the building (Carrara and Fioravanti, 2001), and by the type of IT representation of the individual building components, using the methods and techniques of Knowledge Engineering through a structured set of Knowledge Bases, Inference Engines and Databases. The aim is to develop suitable tools for supporting integrated Process/Product design activity by means of a effective and innovative representation of building entities (technical components, constraints, methods) in order to manage and resolve conflicts generated during the design activity.

keywords Collaborative Design, Architectural Design, Distributed Knowledge Bases, ‘Situated’ Object, Process/Product Model, Private/Shared ‘Design Space’, Conflict Reduction.
series other
type symposium
email antonio.fioravanti@uniroma1.it
last changed 2012/12/04 06:53

_id avocaad_2001_02
id avocaad_2001_02
authors Cheng-Yuan Lin, Yu-Tung Liu
year 2001
title A digital Procedure of Building Construction: A practical project
source AVOCAAD - ADDED VALUE OF COMPUTER AIDED ARCHITECTURAL DESIGN, Nys Koenraad, Provoost Tom, Verbeke Johan, Verleye Johan (Eds.), (2001) Hogeschool voor Wetenschap en Kunst - Departement Architectuur Sint-Lucas, Campus Brussel, ISBN 80-76101-05-1
summary In earlier times in which computers have not yet been developed well, there has been some researches regarding representation using conventional media (Gombrich, 1960; Arnheim, 1970). For ancient architects, the design process was described abstractly by text (Hewitt, 1985; Cable, 1983); the process evolved from unselfconscious to conscious ways (Alexander, 1964). Till the appearance of 2D drawings, these drawings could only express abstract visual thinking and visually conceptualized vocabulary (Goldschmidt, 1999). Then with the massive use of physical models in the Renaissance, the form and space of architecture was given better precision (Millon, 1994). Researches continued their attempts to identify the nature of different design tools (Eastman and Fereshe, 1994). Simon (1981) figured out that human increasingly relies on other specialists, computational agents, and materials referred to augment their cognitive abilities. This discourse was verified by recent research on conception of design and the expression using digital technologies (McCullough, 1996; Perez-Gomez and Pelletier, 1997). While other design tools did not change as much as representation (Panofsky, 1991; Koch, 1997), the involvement of computers in conventional architecture design arouses a new design thinking of digital architecture (Liu, 1996; Krawczyk, 1997; Murray, 1997; Wertheim, 1999). The notion of the link between ideas and media is emphasized throughout various fields, such as architectural education (Radford, 2000), Internet, and restoration of historical architecture (Potier et al., 2000). Information technology is also an important tool for civil engineering projects (Choi and Ibbs, 1989). Compared with conventional design media, computers avoid some errors in the process (Zaera, 1997). However, most of the application of computers to construction is restricted to simulations in building process (Halpin, 1990). It is worth studying how to employ computer technology meaningfully to bring significant changes to concept stage during the process of building construction (Madazo, 2000; Dave, 2000) and communication (Haymaker, 2000).In architectural design, concept design was achieved through drawings and models (Mitchell, 1997), while the working drawings and even shop drawings were brewed and communicated through drawings only. However, the most effective method of shaping building elements is to build models by computer (Madrazo, 1999). With the trend of 3D visualization (Johnson and Clayton, 1998) and the difference of designing between the physical environment and virtual environment (Maher et al. 2000), we intend to study the possibilities of using digital models, in addition to drawings, as a critical media in the conceptual stage of building construction process in the near future (just as the critical role that physical models played in early design process in the Renaissance). This research is combined with two practical building projects, following the progress of construction by using digital models and animations to simulate the structural layouts of the projects. We also tried to solve the complicated and even conflicting problems in the detail and piping design process through an easily accessible and precise interface. An attempt was made to delineate the hierarchy of the elements in a single structural and constructional system, and the corresponding relations among the systems. Since building construction is often complicated and even conflicting, precision needed to complete the projects can not be based merely on 2D drawings with some imagination. The purpose of this paper is to describe all the related elements according to precision and correctness, to discuss every possibility of different thinking in design of electric-mechanical engineering, to receive feedback from the construction projects in the real world, and to compare the digital models with conventional drawings.Through the application of this research, the subtle relations between the conventional drawings and digital models can be used in the area of building construction. Moreover, a theoretical model and standard process is proposed by using conventional drawings, digital models and physical buildings. By introducing the intervention of digital media in design process of working drawings and shop drawings, there is an opportune chance to use the digital media as a prominent design tool. This study extends the use of digital model and animation from design process to construction process. However, the entire construction process involves various details and exceptions, which are not discussed in this paper. These limitations should be explored in future studies.
series AVOCAAD
email aleppo@cc.nctu.edu.tw
last changed 2005/09/09 08:48

_id e821
authors Hartkopf, V., Loftness, V., Mahdavi, A., Lee, S. and Shankavaram, J.
year 1997
title An integrated approach to design and engineering of intelligent buildings--The Intelligent Workplace at Carnegie Mellon University
source Automation in Construction 6 (5-6) (1997) pp. 401-415
summary In the past few years, there have been significant advances made in the design and engineering of "intelligent" workplaces, buildings that not only accommodate major advances in office technology but provide better physical and environmental settings for the occupants. This paper will briefly present recent approaches to the creation of innovative environments for the advanced workplace. The architectural and engineering advances demonstrated in Japan, Germany, North America, the United Kingdom, and France can be summarized in four major system categories: (1) enclosure innovations including approaches to load balancing, natural ventilation, and daylighting; (2) heating, ventilation and air-conditioning (HVAC) system innovations including approaches to local control and improved environmental contact; (3) data/voice/power "connectivity" innovations; and (4) interior system innovations, including approaches to workstation and workgroup design for improved spatial, thermal, acoustic, visual, and air quality. In-depth international field studies of over 20 intelligent office buildings have been carried out by a multidisciplinary expert team of the Advanced Building Systems Integration Consortium (ABSIC) based at Carnegie Mellon University. ABSIC is a university-industry-government partnership focused on the definition and development of the advanced workplace. The ABSIC field team evaluated the component and integrated system innovations for their multidimensional performance qualities, through expert analysis, occupancy assessments, and field diagnostics. Based on the results of the case studies and building on the most recent technological advances, the ABSIC team developed the concepts for the Intelligent Workplace, a 7000 square foot living laboratory of office environments and innovations. This project is now under construction at Carnegie Mellon University and its features are discussed in the second section of this paper.
series journal paper
email amahdavi@tuwien.ac.at
more http://www.elsevier.com/locate/autcon
last changed 2003/05/15 19:22

_id e82f
authors Howe, A Scott
year 1997
title Designing for Automated Construction
source CAADRIA ‘97 [Proceedings of the Second Conference on Computer Aided Architectural Design Research in Asia / ISBN 957-575-057-8] Taiwan 17-19 April 1997, pp. 83-92
summary The majority of automated construction research and development has been bottom-up, from the construction/engineering side rather than top-down from the design end. In order to optimize the use of automated technology, it is important that design principles based on the technology are considered. This paper seeks to address topics related to designing robotic systems for construction, and developing overall design principles for top-down architect/design applications. The research herein is divided into a theoretical research programme for the purpose of deriving a simple shape grammar and a simulation research programme for understanding component connections and robotic manipulation. The second part of this paper introduces a concept automated construction system designed according to the principles derived from the investigation.
series CAADRIA
last changed 1999/02/01 11:50

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 24HOMELOGIN (you are user _anon_590100 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002