CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 547

_id 7ad1
authors Giordano, Rubén F. and Tosello, María Elena
year 1999
title Laberinto: Una Biblioteca para la Virtualidad. Reflexiones y Acontecimientos en el Cyberespacio (Labyrinth: A Library for Virtuality. Reflections and Events in Cyberspace)
source III Congreso Iberoamericano de Grafico Digital [SIGRADI Conference Proceedings] Montevideo (Uruguay) September 29th - October 1st 1999, pp. 83-86
summary This project investigates in the limits of the word like only means of structuring of the thought, before the appearance of new paradigms: the multimedias and the ciber-space that have transformed so much the language written as the architectural one causing unpublished situations: 1.) The transformation of a concrete container to other virtual. 2.) The transformation of the design object, of one static material to another that is a process. 3.) The transformation in the traditional ways of thinking (reversible as the formal logic of the mathematics) to new imaginarys epistemologicals. // These non alone events have caused changes in the forms of to know and to communicate the reality but rather the same one suffers a dilation process. We present for their exploration, a road synthesized in some hypotheses that were elaborated with reason of the International Competition of ACADIA 1998: 1.) The new communication systems (cibercomunication) they generate a new territory that should be colonized. This territory this conformed by objects related by infinite bonds (hipertext). 2.) The topographical form is not lineal and sequential, this it is multidirectional and multiradial. The phenomenon of the blow-up and the dilation are the mechanisms with those that the new objects are generated. 3.) These related fields generate interstitial empty spaces where it appears the desire. The interstice like existential space.
series SIGRADI
email mtosello@fadu.unl.edu.ar
last changed 2016/03/10 08:52

_id ga0026
id ga0026
authors Ransen, Owen F.
year 2000
title Possible Futures in Computer Art Generation
source International Conference on Generative Art
summary Years of trying to create an "Image Idea Generator" program have convinced me that the perfect solution would be to have an artificial artistic person, a design slave. This paper describes how I came to that conclusion, realistic alternatives, and briefly, how it could possibly happen. 1. The history of Repligator and Gliftic 1.1 Repligator In 1996 I had the idea of creating an “image idea generator”. I wanted something which would create images out of nothing, but guided by the user. The biggest conceptual problem I had was “out of nothing”. What does that mean? So I put aside that problem and forced the user to give the program a starting image. This program eventually turned into Repligator, commercially described as an “easy to use graphical effects program”, but actually, to my mind, an Image Idea Generator. The first release came out in October 1997. In December 1998 I described Repligator V4 [1] and how I thought it could be developed away from simply being an effects program. In July 1999 Repligator V4 won the Shareware Industry Awards Foundation prize for "Best Graphics Program of 1999". Prize winners are never told why they won, but I am sure that it was because of two things: 1) Easy of use 2) Ease of experimentation "Ease of experimentation" means that Repligator does in fact come up with new graphics ideas. Once you have input your original image you can generate new versions of that image simply by pushing a single key. Repligator is currently at version 6, but, apart from adding many new effects and a few new features, is basically the same program as version 4. Following on from the ideas in [1] I started to develop Gliftic, which is closer to my original thoughts of an image idea generator which "starts from nothing". The Gliftic model of images was that they are composed of three components: 1. Layout or form, for example the outline of a mandala is a form. 2. Color scheme, for example colors selected from autumn leaves from an oak tree. 3. Interpretation, for example Van Gogh would paint a mandala with oak tree colors in a different way to Andy Warhol. There is a Van Gogh interpretation and an Andy Warhol interpretation. Further I wanted to be able to genetically breed images, for example crossing two layouts to produce a child layout. And the same with interpretations and color schemes. If I could achieve this then the program would be very powerful. 1.2 Getting to Gliftic Programming has an amazing way of crystalising ideas. If you want to put an idea into practice via a computer program you really have to understand the idea not only globally, but just as importantly, in detail. You have to make hard design decisions, there can be no vagueness, and so implementing what I had decribed above turned out to be a considerable challenge. I soon found out that the hardest thing to do would be the breeding of forms. What are the "genes" of a form? What are the genes of a circle, say, and how do they compare to the genes of the outline of the UK? I wanted the genotype representation (inside the computer program's data) to be directly linked to the phenotype representation (on the computer screen). This seemed to be the best way of making sure that bred-forms would bare some visual relationship to their parents. I also wanted symmetry to be preserved. For example if two symmetrical objects were bred then their children should be symmetrical. I decided to represent shapes as simply closed polygonal shapes, and the "genes" of these shapes were simply the list of points defining the polygon. Thus a circle would have to be represented by a regular polygon of, say, 100 sides. The outline of the UK could easily be represented as a list of points every 10 Kilometers along the coast line. Now for the important question: what do you get when you cross a circle with the outline of the UK? I tried various ways of combining the "genes" (i.e. coordinates) of the shapes, but none of them really ended up producing interesting shapes. And of the methods I used, many of them, applied over several "generations" simply resulted in amorphous blobs, with no distinct family characteristics. Or rather maybe I should say that no single method of breeding shapes gave decent results for all types of images. Figure 1 shows an example of breeding a mandala with 6 regular polygons: Figure 1 Mandala bred with array of regular polygons I did not try out all my ideas, and maybe in the future I will return to the problem, but it was clear to me that it is a non-trivial problem. And if the breeding of shapes is a non-trivial problem, then what about the breeding of interpretations? I abandoned the genetic (breeding) model of generating designs but retained the idea of the three components (form, color scheme, interpretation). 1.3 Gliftic today Gliftic Version 1.0 was released in May 2000. It allows the user to change a form, a color scheme and an interpretation. The user can experiment with combining different components together and can thus home in on an personally pleasing image. Just as in Repligator, pushing the F7 key make the program choose all the options. Unlike Repligator however the user can also easily experiment with the form (only) by pushing F4, the color scheme (only) by pushing F5 and the interpretation (only) by pushing F6. Figures 2, 3 and 4 show some example images created by Gliftic. Figure 2 Mandala interpreted with arabesques   Figure 3 Trellis interpreted with "graphic ivy"   Figure 4 Regular dots interpreted as "sparks" 1.4 Forms in Gliftic V1 Forms are simply collections of graphics primitives (points, lines, ellipses and polygons). The program generates these collections according to the user's instructions. Currently the forms are: Mandala, Regular Polygon, Random Dots, Random Sticks, Random Shapes, Grid Of Polygons, Trellis, Flying Leap, Sticks And Waves, Spoked Wheel, Biological Growth, Chequer Squares, Regular Dots, Single Line, Paisley, Random Circles, Chevrons. 1.5 Color Schemes in Gliftic V1 When combining a form with an interpretation (described later) the program needs to know what colors it can use. The range of colors is called a color scheme. Gliftic has three color scheme types: 1. Random colors: Colors for the various parts of the image are chosen purely at random. 2. Hue Saturation Value (HSV) colors: The user can choose the main hue (e.g. red or yellow), the saturation (purity) of the color scheme and the value (brightness/darkness) . The user also has to choose how much variation is allowed in the color scheme. A wide variation allows the various colors of the final image to depart a long way from the HSV settings. A smaller variation results in the final image using almost a single color. 3. Colors chosen from an image: The user can choose an image (for example a JPG file of a famous painting, or a digital photograph he took while on holiday in Greece) and Gliftic will select colors from that image. Only colors from the selected image will appear in the output image. 1.6 Interpretations in Gliftic V1 Interpretation in Gliftic is best decribed with a few examples. A pure geometric line could be interpreted as: 1) the branch of a tree 2) a long thin arabesque 3) a sequence of disks 4) a chain, 5) a row of diamonds. An pure geometric ellipse could be interpreted as 1) a lake, 2) a planet, 3) an eye. Gliftic V1 has the following interpretations: Standard, Circles, Flying Leap, Graphic Ivy, Diamond Bar, Sparkz, Ess Disk, Ribbons, George Haite, Arabesque, ZigZag. 1.7 Applications of Gliftic Currently Gliftic is mostly used for creating WEB graphics, often backgrounds as it has an option to enable "tiling" of the generated images. There is also a possibility that it will be used in the custom textile business sometime within the next year or two. The real application of Gliftic is that of generating new graphics ideas, and I suspect that, like Repligator, many users will only understand this later. 2. The future of Gliftic, 3 possibilties Completing Gliftic V1 gave me the experience to understand what problems and opportunities there will be in future development of the program. Here I divide my many ideas into three oversimplified possibilities, and the real result may be a mix of two or all three of them. 2.1 Continue the current development "linearly" Gliftic could grow simply by the addition of more forms and interpretations. In fact I am sure that initially it will grow like this. However this limits the possibilities to what is inside the program itself. These limits can be mitigated by allowing the user to add forms (as vector files). The user can already add color schemes (as images). The biggest problem with leaving the program in its current state is that there is no easy way to add interpretations. 2.2 Allow the artist to program Gliftic It would be interesting to add a language to Gliftic which allows the user to program his own form generators and interpreters. In this way Gliftic becomes a "platform" for the development of dynamic graphics styles by the artist. The advantage of not having to deal with the complexities of Windows programming could attract the more adventurous artists and designers. The choice of programming language of course needs to take into account the fact that the "programmer" is probably not be an expert computer scientist. I have seen how LISP (an not exactly easy artificial intelligence language) has become very popular among non programming users of AutoCAD. If, to complete a job which you do manually and repeatedly, you can write a LISP macro of only 5 lines, then you may be tempted to learn enough LISP to write those 5 lines. Imagine also the ability to publish (and/or sell) "style generators". An artist could develop a particular interpretation function, it creates images of a given character which others find appealing. The interpretation (which runs inside Gliftic as a routine) could be offered to interior designers (for example) to unify carpets, wallpaper, furniture coverings for single projects. As Adrian Ward [3] says on his WEB site: "Programming is no less an artform than painting is a technical process." Learning a computer language to create a single image is overkill and impractical. Learning a computer language to create your own artistic style which generates an infinite series of images in that style may well be attractive. 2.3 Add an artificial conciousness to Gliftic This is a wild science fiction idea which comes into my head regularly. Gliftic manages to surprise the users with the images it makes, but, currently, is limited by what gets programmed into it or by pure chance. How about adding a real artifical conciousness to the program? Creating an intelligent artificial designer? According to Igor Aleksander [1] conciousness is required for programs (computers) to really become usefully intelligent. Aleksander thinks that "the line has been drawn under the philosophical discussion of conciousness, and the way is open to sound scientific investigation". Without going into the details, and with great over-simplification, there are roughly two sorts of artificial intelligence: 1) Programmed intelligence, where, to all intents and purposes, the programmer is the "intelligence". The program may perform well (but often, in practice, doesn't) and any learning which is done is simply statistical and pre-programmed. There is no way that this type of program could become concious. 2) Neural network intelligence, where the programs are based roughly on a simple model of the brain, and the network learns how to do specific tasks. It is this sort of program which, according to Aleksander, could, in the future, become concious, and thus usefully intelligent. What could the advantages of an artificial artist be? 1) There would be no need for programming. Presumbably the human artist would dialog with the artificial artist, directing its development. 2) The artificial artist could be used as an apprentice, doing the "drudge" work of art, which needs intelligence, but is, anyway, monotonous for the human artist. 3) The human artist imagines "concepts", the artificial artist makes them concrete. 4) An concious artificial artist may come up with ideas of its own. Is this science fiction? Arthur C. Clarke's 1st Law: "If a famous scientist says that something can be done, then he is in all probability correct. If a famous scientist says that something cannot be done, then he is in all probability wrong". Arthur C Clarke's 2nd Law: "Only by trying to go beyond the current limits can you find out what the real limits are." One of Bertrand Russell's 10 commandments: "Do not fear to be eccentric in opinion, for every opinion now accepted was once eccentric" 3. References 1. "From Ramon Llull to Image Idea Generation". Ransen, Owen. Proceedings of the 1998 Milan First International Conference on Generative Art. 2. "How To Build A Mind" Aleksander, Igor. Wiedenfeld and Nicolson, 1999 3. "How I Drew One of My Pictures: or, The Authorship of Generative Art" by Adrian Ward and Geof Cox. Proceedings of the 1999 Milan 2nd International Conference on Generative Art.
series other
email owen@ransen.com
more http://www.generativeart.com/
last changed 2003/08/07 15:25

_id ga9815
id ga9815
authors Annunziato, M.
year 1998
title The Nagual Experiment
source International Conference on Generative Art
summary This paper refers to an experiment about the use of artificial life structures in order to simulate/evocate natural or artificial patterns. These patterns are the effect of the self-organisation of a population of individuals during their process of development and growth. Although the local dynamics and interactions have a chaotic (partially random) behaviour, the global dynamics of the population produces interesting and well structured patterns. The graphic images generated with these procedures show a wide variety of structures in terms of life (growth) simulations and graphic geometries.
series other
email mauro.annunziato@erg056.casaccia.enea.it
more http://www.generativeart.com/
last changed 2003/08/07 15:25

_id c304
authors Barber, T.and Hanna, R.
year 1998
title Appraisal of Design Studio Methodologies
source CAADRIA ‘98 [Proceedings of The Third Conference on Computer Aided Architectural Design Research in Asia / ISBN 4-907662-009] Osaka (Japan) 22-24 April 1998, pp. 21-30
summary This paper investigates the relationship between different design approaches and their effectiveness in the formulation of design concepts. This inquiry will focus on the computer as the sole design and developmental tool. The research employs a short design programme, a small building with a given urban site, as its investigative vehicle. Nineteen second year students of the Mackintosh School of Architecture were monitored and their design progress evaluated. They were split into two groups: one used CAD and AEC as the only drawing and modelling tool, tutorial and review, and another used conventional tools of drawing and model making (mixed media). Structured interviews and personal observations were used as a means for data collection. Questionnaires were administered to students and their response was analysed using the statistical programme SPSS (Statistical Package for the Social Sciences). The Mann-Whitney test was used to test the Null Hypothesis that different design approaches will not produce different design outcomes. Correlation, Regression and the X2 test of independence were also employed to screen data and identify patterns of relationships.

series CAADRIA
email gtca09@udcf.gla.ac.uk
more http://www.caadria.org
last changed 2003/11/21 14:16

_id 4942
authors Gardner, Brian M.
year 1998
title The Grid Sketcher: An AutoCAD Based Tool for Conceptual Design Processes
source Digital Design Studios: Do Computers Make a Difference? [ACADIA Conference Proceedings / ISBN 1-880250-07-1] Québec City (Canada) October 22-25, 1998, pp. 222-237
summary Sketching with pencil and paper is reminiscent of the varied, rich, and loosely defined formal processes associated with conceptual design. Architects actively engage such creative paradigms in their exploration and development of conceptual design solutions. The Grid Sketcher, as a conceptual sketching tool, presents one possible computer implementation for enhancing and supporting these processes. It effectively demonstrates the facility with which current technology and the computing environment can enhance and simulate sketching intents and expectations. One pervasive and troubling undercurrent, however, is the conceptual barrier between the variable processes of human thought and those indigenous to computing. Typically with respect to design, the position taken is that the two are virtually void of any fundamental commonality. A designer’s thoughts are intuitive, at times irrational, and rarely follow consistently identifiable patterns. Conversely, computing requires predictability in just these endeavors. Computing is strictly an algorithmic process while thought is not always so predictable. Given these dichotomous relationships, the computing environment, as commonly defined, cannot reasonably expect to mimic the typically human domain of creative design. In this context, this thesis accentuates the computer’s role as a form generator as opposed to a form evaluator. The computer, under the influence of certain contextual parameters can, however, provide the designer with a rich and elegant set of forms that respond through algorithmics to the designer’s creative intents. The software presented in this thesis is written in AutoLISP and exploits AutoCAD’s capacious 3D environment. Designs and productions respond to a bounded framework where user selected parametric variables of size, scale, proportion, and proximity, all which reflect contextual issues, determine the characteristics of a unit form. Designer selected growth algorithms then arbitrate the spatial relationships between the unit forms and their propagation through the developing design. While the Sketcher implements only the GRID as an organizational discipline, many other paradigms are possible. Within this grid structure a robust set of editing features, supported by the computer’s inherent speed, allows the designer to analyze successive productions while refining ever more complex solutions. Through creative manipulation of these algorithmic structures ideas eventually coalesce to formalize images that represent a given design problem’s solution set.

series ACADIA
email jvcarch@mcione.com
last changed 1998/12/16 08:41

_id 99f2
authors Gero, J.S.
year 1998
title Concept formation in design
source Knowledge-Based Systems 10(7-8): 429-435
summary This paper presents a computationally tractable view on where simple design concepts come from by proposing a paradigm for the formation of design concepts based on the emergence of patterns in the representation of designs. It is suggested that these design patterns form the basis of concepts. These design patterns once learned are then added to the repertoire of known patterns so that they do not need to be learned again. This approach uses the notion called the loosely-wired brain. The paper elaborates this idea primarily through implemented examples drawn from the genetic engineering of evolutionary systems and the qualitative representation of shapes and their multiple representations.
keywords Concept Formation, Pattern Emergence, Representation
series other
email john@arch.usyd.edu.au
last changed 2003/04/06 07:00

_id 1373
authors Pfaffenbichler, Paul C. and Emberger, Günter
year 2003
title Are European cities becoming similar?
source CORP 2003, Vienna University of Technology, 25.2.-28.2.2003 [Proceedings on CD-Rom]
summary The paper discusses city specific development patterns to overcome todays transport problems. The results are based on recent andongoing research activities at TUW-IVV and ITS. At previous CORP-conferences, we presented the basics and the development of aplanning support tool to find optimal policy packages in urban transport and land use (Emberger, 1998), (Pfaffenbichler, Emberger, 2001). The core of this planning support tool is a dynamic land use and transport interaction model. This model, which we refer to as Sketch Planning Model (SPM), is embedded into an appraisal and optimisation framework. The SPM and this framework were developed in the recently finished European Union funded research project PROSPECTS1. Case studies with this planning supporttool were performed within PROSPECTS for the cities Edinburgh, Helsinki, Madrid, Oslo, Stockholm and Vienna. These cities are principally comparable in regards of their status (capitals and major business and education centres), but different in their size, population density, transport system etc. A set of policy instruments like public transport improvements, car traffic restrictions, and infrastructure provision was available to formulate strategies to reduce negative impacts of transport and to increase welfare. The overall objective was a sustainable development of the city. Although the instruments and the goals are similar in all investigatedcites, different solutions were adequate. The solutions vary in regard of spatial implementation, implementation time and level of implementation. The paper will highlight some reasons for the different development paths of the cities. As well the comparison of the do nothing scenario as the comparison of the most feasible policy strategies shows that European cities are different, need different solutions for their problems and will stay different in the future.
series other
email paul.pfaffenbichler@tuwien.ac.at
last changed 2003/03/11 19:39

_id ddss9866
id ddss9866
authors Zacharias, John
year 1998
title Virtual Shopping Centre Models and Path Choice
source Timmermans, Harry (Ed.), Fourth Design and Decision Support Systems in Architecture and Urban Planning Maastricht, the Netherlands), ISBN 90-6814-081-7, July 26-29, 1998
summary A three-dimensional computer model of a shopping center was navigated by participants who were unfamiliar with it. In the first experiment, an orthogonal and equally spaced grid was used. It was found that the great majority of the itineraries made simple and similar patterns which were remembered by the participants, although they often mistook theprecise path choices. In a second experiment, the width of the corridors was varied. Participants showed a distinct preference for wider corridors over narrow ones, resulting in a significantly different distribution of itineraries when compared with the results of the first experiment. Dimensional variation did not improve the ability of the participants toremember their itineraries, however. Also, individuals preferred to continue moving straight-ahead over turning. They also preferred to circumnavigate the shopping center, traveling along the outer edges, rather than head first into its center. The computer-based model is a low-cost way of testing preference in a dynamic way and could be mounted on multiple stations in computer laboratories as a way of increasing sample size. Thereremain some interface problems, however, that diminish somewhat the sensation of moving in real time. Further work will include refinements to the model and other variations in geometry and visual stimuli in the virtual shopping center, in addition to its validation in real environments.
series DDSS
last changed 2003/08/07 14:36

_id ddss9841
id ddss9841
authors Malkawi, Ali
year 1998
title Representing Collaborative Multi- Knowledge Agents as Generic Rules
source Timmermans, Harry (Ed.), Fourth Design and Decision Support Systems in Architecture and Urban Planning Maastricht, the Netherlands), ISBN 90-6814-081-7, July 26-29, 1998
summary This paper discusses the internal representation of a multi-knowledge agent decision support system that was developed for building thermal design. The system is able to provide designers with specific problem detection in thermal design without the use of rules of thumb. The paper describes how generic rules can be used as virtual agents and how these agents can interact using a blackboard model. The generic rules utilized use logical variables as a strategy to capture generality. This allows the rules todeal with variables that can be replaced by any possible term. In addition, it allows the rules to be equivalent to the infinite set of rules that could be obtained if the variables were replaced in all possible ways by terms. In the system, these terms include the building elements and systems that affect the thermal behavior of the building. Problems associated with agent conflicts and how they were resolved in such a model are described.
series DDSS
last changed 2003/08/07 14:36

_id 0f09
authors Ando, H., Kubota, A. and Kiriyama, T.
year 1998
title Study on the collaborative design process over the internet: A case study on VRML 2.0 specification design
source Design Studies 19, pp. 289-308
summary In this paper, we analyze the process of VRML 2.0 (Virtual Reality Modeling Language, Version 2.0) specification design for the deeper understanding of Internet-based collaboration. The VRML design process has the characteristics of being open to the public, geographically distributed, long-term, large-scale, and diverse. First, we examine the overall features of the design process by analyzing the VRML mailing list archive statistically. Secondly, we extract prototyping vocabulary (operational patterns) from the document change log. Thirdly, we analyze the process of proposing and agreeing with the PROTO node in detail. The results of analysis provide us with a guidance for facilitating innovation in the Internet-based collaboration.
series journal paper
last changed 2003/11/21 14:15

_id b335
authors Bayle, E., Bellamy, R., Casaday, G., Erickson, T., Fincher, S., Grinter, B., Gross, B., Lehder, D., Marmolin, H., Moore, B., Potts, C., Skousen, G. and Thomas, T.
year 1998
title Putting It All Together: Towards a Pattern Language for Interaction Design Reports
source ACM SIGCHI Bulletin 1998 v.30 n.1 pp.17-23
summary Pattern languages are representations that have been used in architecture and urban design for about twenty years. They focus on the interaction between physical form and social behavior, and express design solutions in an understandable and generalizable form. But pattern languages are not simply set of patterns intended to be universally applied; instead, they are actually meta-languages which, when used in a particular situations, generate situated design languages. This report describes a CHI 97 workshop which explored the utility of pattern languages for interaction design. We discuss the workshop's rationale, the structure and process of the workshop, and some of the workshop's results. In particular, we describe some patterns developed as part of the workshop, and our consequent reflections on the use of patterns and pattern languages as lingua franca for interaction design. This report concludes with a bibliography on pattern languages and related matters that spans architecture, software design, and organizational design.
series other
last changed 2002/07/07 14:01

_id 2a12
authors Burry, Mark and More, Gregory
year 1998
title Representation, Realism and Computer Generated Architectural Animation
source Cyber-Real Design [Conference Proceedings / ISBN 83-905377-2-9] Bialystock (Poland), 23-25 April 1998, pp. 241-249
summary This paper documents a simple architectural form which, but for computer generated animation, has no ready alternative explanatory process for its complex generation. The subject is a column in the nave of the Sagrada Familia Church in Barcelona conceived by Gaudí at the beginning of this century without the contemporary opportunities for animated design exploration. The column is based on a set of counter-rotating mutually interfering profiles. As the column gains height, the profiles increase in interference with each other resulting in an increasingly fluted cross section, a tendency towards the Doric Order. For most, however, there is no easy access to a plausible explanation of the inherent rationale for the column. Animating the generation of the column reveals a unique and concealed sublimation of natural patterns of growth. Animation aids an understanding of the effect of the fourth dimension on design itself by releasing a meaning of time from an otherwise inanimate object. Here animation is used to decipher one aspect of the mystery of Gaudí's design while strengthening another: the source and conceptual power of Gaudí to anticipate this phenomenon. Rather than trivialising this design mystery, the explanatory role of the animation enriches comprehension of the formal concept of mutation through displacement or an evolutionary design paradigm. The paper discuss the implications of this ability to show transition, translation and dislocation without delving too deeply into how the animation was made, nor indeed the subject which, after all, requires animation to fully represent its less tangible qualities.
series plCAD
email mark.burry@rmit.edu.au
last changed 2003/05/17 08:01

_id 3542
authors Cha, M.Y. and Gero, J.S.
year 1998
title Shape pattern recognition using a computable shape pattern representation
source J.S. Gero and F. Sudweeks (eds), Artificial Intelligence in Design '98, Kluwer, Dordrecht, pp. 169-188
summary Properties of shapes and shape patterns are investigated in order to represent shape pattern knowledge for supporting shape pattern recognition. It is based on the notion that shape patterns are classified in terms of similarity of spatial relationships as well as physical properties. Methods for shape pattern recognition are explained and examples from an implementation are presented.
keywords Shape Patterns, Shape Representation
series other
email john@arch.usyd.edu.au
last changed 2003/04/06 06:57

_id ac21
id ac21
authors Giddings B, Horne M
year 2008
title The Changing Patterns of Architectural Design Education
source Architecture and Modern Information Technologies, Vol. 3, No. 4. ISSN-1998-4839
summary Digital technologies have been introduced to students of architecture for over two decades and at present it could be argued that students are producing some of the highest quality designs, and some of the most interesting forms ever to come from University Schools. The value of computer aided design (CAD) is also being demonstrated in architectural practice, with high profile, large budget, bespoke and iconic buildings designed by internationally renowned architects. This paper reviews the changing patterns of architectural design education and considers the contribution digital technologies could make to buildings with more commonplace uses. The study offers a perspective on different kinds of buildings and considers the influence that emerging technologies are having on building form. It outlines digital technologies, alongside students’ application for architectural design and considers the role they could play in the future, in developing a shared architectural language. It is suggested that some of the biggest opportunities for future research will be in the design of external spaces, often a neglected part of architectural design education.
keywords architectural design education, digital technologies
series other
type normal paper
email m.horne@unn.ac.uk
more http://www.marhi.ru/AMIT
last changed 2008/11/02 19:38

_id e077
authors Koutamanis, Alexander
year 1998
title Designing with the Computer: The Influence of Design Practice and Research
source Computers in Design Studio Teaching [EAAE/eCAADe International Workshop Proceedings / ISBN 09523687-7-3] Leuven (Belgium) 13-14 November 1998, pp. 91-97
summary The paper describes the setup and development of an advanced course in CAAD in the framework of a particular teaching environment and the democratization of computing technologies. It traces the transformation of goals and means for the course as a result of changing priorities and interests towards a form that agrees with emerging cultural patterns as observed in architectural education.

series eCAADe
email a.koutamanis@bk.tudelft.nl
more http://www.eaae.be/
last changed 2000/11/21 08:16

_id e122
authors Park, Soo-Hoon and Gero, John S.
year 1998
title Analysis of Architectural Sketches Using Categorical Shape Knowledge Based on Shape Features
source CAADRIA ‘98 [Proceedings of The Third Conference on Computer Aided Architectural Design Research in Asia / ISBN 4-907662-009] Osaka (Japan) 22-24 April 1998, pp. 405-414
summary Shape feature analysis method is suggested as a computational support for the association of pictorial patterns of sketches with design semantics. Geometric patterns have been represented with qualitative scheme which is capable of representing classes for a collection of instances. Similarities to the particular shape feature categories have been measured to compare the sketch instances.
keywords Sketches, Q-Code, Shape Feature, Categorical Shape Knowledge
series CAADRIA
email soohoon@arch.usyd.edu.au
more http://www.caadria.org
last changed 1998/12/02 13:14

_id 6311
authors Rychter, Zenon
year 1998
title Event Driven Turtle as Pattern Generator
source Cyber-Real Design [Conference Proceedings / ISBN 83-905377-2-9] Bialystock (Poland), 23-25 April 1998, pp. 163-176
summary Computer programming is a powerful exploratory design tool. A simple algorithm can produce results of unexpected complexity, variety, and appeal. By mimicking evolution in nature, rich global states are gradually developed over time by iteration of elementary local rules. Fractal images and life-game simulations are two well known examples. This paper presents a pattern-generating application based on the walking turtle metaphor. The turtle has an intelligence of its own, can be randomly disturbed or directed interactively by the user. Several snapshots are shown of amazingly diverse patterns left by the turtle walking in various modes. Advantages of object-oriented visual programming environments for rapid application development are discussed.
series plCAD
last changed 1999/04/08 15:16

_id e679
authors Seichter, H., Donath, D. and Petzold, F.
year 2002
title TAP – The Architectural Playground - C++ framework for scalable distributed collaborative architectural virtual environments
source Connecting the Real and the Virtual - design e-ducation [20th eCAADe Conference Proceedings / ISBN 0-9541183-0-8] Warsaw (Poland) 18-20 September 2002, pp. 422-426
summary Architecture is built information (Schmitt, 1999). Architects have the task of restructuring and translating information into buildable designs. The beginning of the design process where the briefing is transformed into an idea is a crucial phase in the design process. It is where the architect makes decisions which influence the rest of the design development process (Vries et al., 1998). It is at this stage where most information is unstructured but has to be integrated into a broad context. This is where TAP is positioned – to support the architect in finding solutions through the creation of spatially structured information sets without impairing thereby the creative development. We want to enrich the inspiration of an architect with a new kind of information design. A further aspect is workflow in a distributed process where the architect’s work becomes one aspect of a decentralised working patterns. The software supports collaborative work with models, sketches and text messages within an uniform surface. The representations of the various media are connected and combined with each other and the user is free to combine them according to his or her needs.
series eCAADe
email hartmut.seichter@archit.uni-weimar.de
last changed 2002/09/09 17:19

_id 39
authors Serrentino, Roberto and Borsetti, Ricardo
year 1998
title Los Teselados Periodicos de M. C. Escher (The Periodic Teselates of M.C. Escher)
source II Seminario Iberoamericano de Grafico Digital [SIGRADI Conference Proceedings / ISBN 978-97190-0-X] Mar del Plata (Argentina) 9-11 september 1998, pp. 292-299
summary A modular designing strategy is proposed employing the periodic tessellations used by Dutch artist M.C. Escher as source of inspiration. It consists in modifying a bidimensional shape to fit geometrically programmatic requirements of an architectural project operating as an insertion support of 3D forms. The procedures followed by the artist are analysed, specially those using figures that tessellate the plane periodically, applying different symmetry rules. Once the rules to generate shapes of tiles are known, we work within area and perimeter to satisfy modularity requirements and to convert the tiling as a geometric precise support for the insertion of architectural objects that follow predetermined dimensional patterns. An example of grouping repeatable habitation units is presented.
series SIGRADI
email labsist@herrera.unt.edu.ar
last changed 2016/03/10 09:00

_id 6433
authors Agranovich-Ponomarieva, E. and Litvinova, A.
year 1998
title The "Real Space - Cyberspace" Paradigm
source Cyber-Real Design [Conference Proceedings / ISBN 83-905377-2-9] Bialystock (Poland), 23-25 April 1998, pp. 141-145
summary In a chain of "real - perceived - imagined space" the computer reduces to a uniform model of only real and imagined space. It cannot undertake man's function or it cannot build the perception model. However, perception assumes physiological perception, psychological estimation and understanding, and emotional ho-experience. For a person the seizing of space during perception is constructing temporary spatial images and their development. The communicative relations of the person with environment are established during revealing internal and external structural communications and the interior represents the message, unwrapped in space and perceived in time. The real space is formed under influence of the sum of conceptual restrictions. The character of these restrictions depends on a super idea, a type of an initial situation, character of installations and on social-cultural stereotypes of the author. Without this stage transition to real architectural object is impossible. Result of activity of an architect at this stage becomes creation hypothetical cyberspace, with its own peculiarities and laws.
series plCAD
last changed 1999/04/08 15:16

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 27HOMELOGIN (you are user _anon_623506 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002