CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 540

_id ddss9816
id ddss9816
authors Demirel, Füsun
year 1998
title A Research on Housing in Ankara-Turkey
source Timmermans, Harry (Ed.), Fourth Design and Decision Support Systems in Architecture and Urban Planning Maastricht, the Netherlands), ISBN 90-6814-081-7, July 26-29, 1998
summary The subject of this research contains an opinionnaire study and its results obtained from 30 houses in Ankara-TURKEY in which the people have middle and upper middle income so as to identify their favourites and criticsm about housing, regarding to their both houses and environment as well as tomake the definition of ideal houses and environment. Totally 30 subjects of which 21 are female and 9 are male which represent middle and upper middle incomed people. The average age of the subjects whose age range vary between 21 and 70 is 41. In the study, firstly, the opinionnaire questions were prepared and the housing in which the middle and upper middle incomed people live were determined as socio-economic level to be examined. Next permission and time reservation were requested fromthe owner's of housing to implement the study. During the times which have been determined by the subjects, the following procedure has been followed reading of the opinionnaire forms by myself and recording of responses of the subjects exactly, drawing of reliefs and plans of house, taking pictures of outer views and surroundings of housings. Tendencies of users' against various conditions have been transformed into numerical values from 1 to 7 in a scale with 7 column. In the light of above information; Considering the country conditions it was observed that these housing were excessivelylarge and were built for ostentation purposes, not for functional purposes. Usefulness, that is to say, design of house is in the bottom of the criteria list and it is not an important factor to choose the house, form another part of interesting findings of this study. Another significant result has been observed due to users desire about their house. Although the rising of design which was in 6th rank among the reasons to prefer a house was not an effective criteria on users' attitudes merely to have ahouse, this criteria was the 1st rank (87 %) among reasons due to the advantages that were provided for the users with respected to design and functionality as a result of meticulous studies of architects.Users' criticisms on their vicinity have shown variations according to their sexes.As a result of this research that were initiated to define the ideal house and environment concepts; interesting and detailed data about users' tendencies in the scope of both house and settling are available in "Findings" part of this study. Rising of desing criteria which was the 6 th rank amongcriteria's to choose a house, to 1st rank has brought the following conclusion: since the users are not able to act consciously due to the consideration of the properly owing action much more important,the main duty here is performed by the planner. Hence, starting from the assumption that users living in housings are extremely sensitive to their houses and especially environments, provision of public participation via this kind of opinionnaire studies while creating new environments, may contribute to create such environments in which people can live.
series DDSS
last changed 2003/08/07 14:36

_id 1d83
authors Dodge, M., Doyle, S. and Smith, A.
year 1998
title Visual Communication in Urban Planning and Urban Design
source Working Paper 2; Centre for Advanced Spatial Analysis Working Papers; London; June 1998
summary This Case Study documents the current status of visual communication in urban design and planning. Visual communication is examined through discussion of standalone and network media, specifically concentrating on visualisation on the World Wide Web (WWW). First, we examine the use of Solid and Geometric Modelling for visualising urban planning and urban design. This report documents and compares examples of the use of Virtual Reality Modelling Language (VRML) and proprietary WWW based Virtual Reality modelling software. Examples include the modelling of Bath and Glasgow using both VRML 1.0 and 2.0. The use of Virtual Worlds and their role in visualising urban form within multi-user environments is reviewed. The use of Virtual Worlds is developed into a study of the possibilities and limitations of Virtual Internet Design Arena's (ViDA's), an initiative undertaken at the Centre for Advanced Spatial Analysis, University College London. The use of Virtual Worlds and their development towards ViDA's is seen as one of the most important developments in visual communication for urban planning and urban design since the development plan. Secondly, the role of photorealistic media in the process of communicating plans is examined. The process of creating photorealistic media is documented, and examples of the Virtual Streetscape and Wired Whitehall Virtual Urban Interface System are provided. The conclusion is that, although the use of photo-realistic media on the WWW provides a way to visually communicate planning information, its use is limited. The merging of photorealistic media and solid geometric modelling in the creation of Augmented Reality is reviewed. Augmented Reality is seen to provide an important step forward in the ability quickly and easily to visualise urban planning and urban design information. Third, the role of visual communication of planning data through GIS is examined in terms of desktop, three dimensional, and Internet based GIS. The evolution to Internet GIS is seen as a critical component in the development of virtual cities that will allow urban planners and urban designers to visualise and model the complexity of the built environment in networked virtual reality. Finally, a viewpoint is put forward of the Virtual City, linking Internet GIS with photorealistic multi-user Virtual Worlds. At present there are constraints on how far virtual cities can be developed, but a view is provided on how these networked virtual worlds are developing to aid visual communication in urban planning and urban design.
series other
last changed 2003/04/23 13:50

_id ga0026
id ga0026
authors Ransen, Owen F.
year 2000
title Possible Futures in Computer Art Generation
source International Conference on Generative Art
summary Years of trying to create an "Image Idea Generator" program have convinced me that the perfect solution would be to have an artificial artistic person, a design slave. This paper describes how I came to that conclusion, realistic alternatives, and briefly, how it could possibly happen. 1. The history of Repligator and Gliftic 1.1 Repligator In 1996 I had the idea of creating an “image idea generator”. I wanted something which would create images out of nothing, but guided by the user. The biggest conceptual problem I had was “out of nothing”. What does that mean? So I put aside that problem and forced the user to give the program a starting image. This program eventually turned into Repligator, commercially described as an “easy to use graphical effects program”, but actually, to my mind, an Image Idea Generator. The first release came out in October 1997. In December 1998 I described Repligator V4 [1] and how I thought it could be developed away from simply being an effects program. In July 1999 Repligator V4 won the Shareware Industry Awards Foundation prize for "Best Graphics Program of 1999". Prize winners are never told why they won, but I am sure that it was because of two things: 1) Easy of use 2) Ease of experimentation "Ease of experimentation" means that Repligator does in fact come up with new graphics ideas. Once you have input your original image you can generate new versions of that image simply by pushing a single key. Repligator is currently at version 6, but, apart from adding many new effects and a few new features, is basically the same program as version 4. Following on from the ideas in [1] I started to develop Gliftic, which is closer to my original thoughts of an image idea generator which "starts from nothing". The Gliftic model of images was that they are composed of three components: 1. Layout or form, for example the outline of a mandala is a form. 2. Color scheme, for example colors selected from autumn leaves from an oak tree. 3. Interpretation, for example Van Gogh would paint a mandala with oak tree colors in a different way to Andy Warhol. There is a Van Gogh interpretation and an Andy Warhol interpretation. Further I wanted to be able to genetically breed images, for example crossing two layouts to produce a child layout. And the same with interpretations and color schemes. If I could achieve this then the program would be very powerful. 1.2 Getting to Gliftic Programming has an amazing way of crystalising ideas. If you want to put an idea into practice via a computer program you really have to understand the idea not only globally, but just as importantly, in detail. You have to make hard design decisions, there can be no vagueness, and so implementing what I had decribed above turned out to be a considerable challenge. I soon found out that the hardest thing to do would be the breeding of forms. What are the "genes" of a form? What are the genes of a circle, say, and how do they compare to the genes of the outline of the UK? I wanted the genotype representation (inside the computer program's data) to be directly linked to the phenotype representation (on the computer screen). This seemed to be the best way of making sure that bred-forms would bare some visual relationship to their parents. I also wanted symmetry to be preserved. For example if two symmetrical objects were bred then their children should be symmetrical. I decided to represent shapes as simply closed polygonal shapes, and the "genes" of these shapes were simply the list of points defining the polygon. Thus a circle would have to be represented by a regular polygon of, say, 100 sides. The outline of the UK could easily be represented as a list of points every 10 Kilometers along the coast line. Now for the important question: what do you get when you cross a circle with the outline of the UK? I tried various ways of combining the "genes" (i.e. coordinates) of the shapes, but none of them really ended up producing interesting shapes. And of the methods I used, many of them, applied over several "generations" simply resulted in amorphous blobs, with no distinct family characteristics. Or rather maybe I should say that no single method of breeding shapes gave decent results for all types of images. Figure 1 shows an example of breeding a mandala with 6 regular polygons: Figure 1 Mandala bred with array of regular polygons I did not try out all my ideas, and maybe in the future I will return to the problem, but it was clear to me that it is a non-trivial problem. And if the breeding of shapes is a non-trivial problem, then what about the breeding of interpretations? I abandoned the genetic (breeding) model of generating designs but retained the idea of the three components (form, color scheme, interpretation). 1.3 Gliftic today Gliftic Version 1.0 was released in May 2000. It allows the user to change a form, a color scheme and an interpretation. The user can experiment with combining different components together and can thus home in on an personally pleasing image. Just as in Repligator, pushing the F7 key make the program choose all the options. Unlike Repligator however the user can also easily experiment with the form (only) by pushing F4, the color scheme (only) by pushing F5 and the interpretation (only) by pushing F6. Figures 2, 3 and 4 show some example images created by Gliftic. Figure 2 Mandala interpreted with arabesques   Figure 3 Trellis interpreted with "graphic ivy"   Figure 4 Regular dots interpreted as "sparks" 1.4 Forms in Gliftic V1 Forms are simply collections of graphics primitives (points, lines, ellipses and polygons). The program generates these collections according to the user's instructions. Currently the forms are: Mandala, Regular Polygon, Random Dots, Random Sticks, Random Shapes, Grid Of Polygons, Trellis, Flying Leap, Sticks And Waves, Spoked Wheel, Biological Growth, Chequer Squares, Regular Dots, Single Line, Paisley, Random Circles, Chevrons. 1.5 Color Schemes in Gliftic V1 When combining a form with an interpretation (described later) the program needs to know what colors it can use. The range of colors is called a color scheme. Gliftic has three color scheme types: 1. Random colors: Colors for the various parts of the image are chosen purely at random. 2. Hue Saturation Value (HSV) colors: The user can choose the main hue (e.g. red or yellow), the saturation (purity) of the color scheme and the value (brightness/darkness) . The user also has to choose how much variation is allowed in the color scheme. A wide variation allows the various colors of the final image to depart a long way from the HSV settings. A smaller variation results in the final image using almost a single color. 3. Colors chosen from an image: The user can choose an image (for example a JPG file of a famous painting, or a digital photograph he took while on holiday in Greece) and Gliftic will select colors from that image. Only colors from the selected image will appear in the output image. 1.6 Interpretations in Gliftic V1 Interpretation in Gliftic is best decribed with a few examples. A pure geometric line could be interpreted as: 1) the branch of a tree 2) a long thin arabesque 3) a sequence of disks 4) a chain, 5) a row of diamonds. An pure geometric ellipse could be interpreted as 1) a lake, 2) a planet, 3) an eye. Gliftic V1 has the following interpretations: Standard, Circles, Flying Leap, Graphic Ivy, Diamond Bar, Sparkz, Ess Disk, Ribbons, George Haite, Arabesque, ZigZag. 1.7 Applications of Gliftic Currently Gliftic is mostly used for creating WEB graphics, often backgrounds as it has an option to enable "tiling" of the generated images. There is also a possibility that it will be used in the custom textile business sometime within the next year or two. The real application of Gliftic is that of generating new graphics ideas, and I suspect that, like Repligator, many users will only understand this later. 2. The future of Gliftic, 3 possibilties Completing Gliftic V1 gave me the experience to understand what problems and opportunities there will be in future development of the program. Here I divide my many ideas into three oversimplified possibilities, and the real result may be a mix of two or all three of them. 2.1 Continue the current development "linearly" Gliftic could grow simply by the addition of more forms and interpretations. In fact I am sure that initially it will grow like this. However this limits the possibilities to what is inside the program itself. These limits can be mitigated by allowing the user to add forms (as vector files). The user can already add color schemes (as images). The biggest problem with leaving the program in its current state is that there is no easy way to add interpretations. 2.2 Allow the artist to program Gliftic It would be interesting to add a language to Gliftic which allows the user to program his own form generators and interpreters. In this way Gliftic becomes a "platform" for the development of dynamic graphics styles by the artist. The advantage of not having to deal with the complexities of Windows programming could attract the more adventurous artists and designers. The choice of programming language of course needs to take into account the fact that the "programmer" is probably not be an expert computer scientist. I have seen how LISP (an not exactly easy artificial intelligence language) has become very popular among non programming users of AutoCAD. If, to complete a job which you do manually and repeatedly, you can write a LISP macro of only 5 lines, then you may be tempted to learn enough LISP to write those 5 lines. Imagine also the ability to publish (and/or sell) "style generators". An artist could develop a particular interpretation function, it creates images of a given character which others find appealing. The interpretation (which runs inside Gliftic as a routine) could be offered to interior designers (for example) to unify carpets, wallpaper, furniture coverings for single projects. As Adrian Ward [3] says on his WEB site: "Programming is no less an artform than painting is a technical process." Learning a computer language to create a single image is overkill and impractical. Learning a computer language to create your own artistic style which generates an infinite series of images in that style may well be attractive. 2.3 Add an artificial conciousness to Gliftic This is a wild science fiction idea which comes into my head regularly. Gliftic manages to surprise the users with the images it makes, but, currently, is limited by what gets programmed into it or by pure chance. How about adding a real artifical conciousness to the program? Creating an intelligent artificial designer? According to Igor Aleksander [1] conciousness is required for programs (computers) to really become usefully intelligent. Aleksander thinks that "the line has been drawn under the philosophical discussion of conciousness, and the way is open to sound scientific investigation". Without going into the details, and with great over-simplification, there are roughly two sorts of artificial intelligence: 1) Programmed intelligence, where, to all intents and purposes, the programmer is the "intelligence". The program may perform well (but often, in practice, doesn't) and any learning which is done is simply statistical and pre-programmed. There is no way that this type of program could become concious. 2) Neural network intelligence, where the programs are based roughly on a simple model of the brain, and the network learns how to do specific tasks. It is this sort of program which, according to Aleksander, could, in the future, become concious, and thus usefully intelligent. What could the advantages of an artificial artist be? 1) There would be no need for programming. Presumbably the human artist would dialog with the artificial artist, directing its development. 2) The artificial artist could be used as an apprentice, doing the "drudge" work of art, which needs intelligence, but is, anyway, monotonous for the human artist. 3) The human artist imagines "concepts", the artificial artist makes them concrete. 4) An concious artificial artist may come up with ideas of its own. Is this science fiction? Arthur C. Clarke's 1st Law: "If a famous scientist says that something can be done, then he is in all probability correct. If a famous scientist says that something cannot be done, then he is in all probability wrong". Arthur C Clarke's 2nd Law: "Only by trying to go beyond the current limits can you find out what the real limits are." One of Bertrand Russell's 10 commandments: "Do not fear to be eccentric in opinion, for every opinion now accepted was once eccentric" 3. References 1. "From Ramon Llull to Image Idea Generation". Ransen, Owen. Proceedings of the 1998 Milan First International Conference on Generative Art. 2. "How To Build A Mind" Aleksander, Igor. Wiedenfeld and Nicolson, 1999 3. "How I Drew One of My Pictures: or, The Authorship of Generative Art" by Adrian Ward and Geof Cox. Proceedings of the 1999 Milan 2nd International Conference on Generative Art.
series other
email owen@ransen.com
more http://www.generativeart.com/
last changed 2003/08/07 15:25

_id avocaad_2001_09
id avocaad_2001_09
authors Yu-Tung Liu, Yung-Ching Yeh, Sheng-Cheng Shih
year 2001
title Digital Architecture in CAD studio and Internet-based competition
source AVOCAAD - ADDED VALUE OF COMPUTER AIDED ARCHITECTURAL DESIGN, Nys Koenraad, Provoost Tom, Verbeke Johan, Verleye Johan (Eds.), (2001) Hogeschool voor Wetenschap en Kunst - Departement Architectuur Sint-Lucas, Campus Brussel, ISBN 80-76101-05-1
summary Architectural design has been changing because of the vast and creative use of computer in different ways. From the viewpoint of designing itself, computer has been used as drawing tools in the latter phase of design (Mitchell 1977; Coyne et al. 1990), presentation and simulation tools in the middle phase (Liu and Bai 2000), and even critical media which triggers creative thinking in the very early phase (Maher et al. 2000; Liu 1999; Won 1999). All the various roles that computer can play have been adopted in a number of professional design corporations and so-called computer-aided design (CAD) studio in schools worldwide (Kvan 1997, 2000; Cheng 1998). The processes and outcomes of design have been continuously developing to capture the movement of the computer age. However, from the viewpoint of social-cultural theories of architecture, the evolvement of design cannot be achieved solely by designers or design processes. Any new idea of design can be accepted socially, culturally and historically only under one condition: The design outcomes could be reviewed and appreciated by critics in the field at the time of its production (Csikszentmihalyi 1986, 1988; Schon and Wiggins 1992; Liu 2000). In other words, aspects of design production (by designers in different design processes) are as critical as those of design appreciation (by critics in different review processes) in the observation of the future trends of architecture.Nevertheless, in the field of architectural design with computer and Internet, that is, so-called computer-aided design computer-mediated design, or internet-based design, most existing studies pay more attentions to producing design in design processes as mentioned above. Relatively few studies focus on how critics act and how they interact with designers in the review processes. Therefore, this study intends to investigate some evolving phenomena of the interaction between design production and appreciation in the environment of computer and Internet.This paper takes a CAD studio and an Internet-based competition as examples. The CAD studio includes 7 master's students and 2 critics, all from the same countries. The Internet-based competition, held in year 2000, includes 206 designers from 43 counties and 26 critics from 11 countries. 3 students and the 2 critics in the CAD studio are the competition participating designers and critics respectively. The methodological steps are as follows: 1. A qualitative analysis: observation and interview of the 3 participants and 2 reviewers who join both the CAD studio and the competition. The 4 analytical criteria are the kinds of presenting media, the kinds of supportive media (such as verbal and gesture/facial data), stages of the review processes, and interaction between the designer and critics. The behavioral data are acquired by recording the design presentation and dialogue within 3 months. 2. A quantitative analysis: statistical analysis of the detailed reviewing data in the CAD studio and the competition. The four 4 analytical factors are the reviewing time, the number of reviewing of the same project, the comparison between different projects, and grades/comments. 3. Both the qualitative and quantitative data are cross analyzed and discussed, based on the theories of design thinking, design production/appreciation, and the appreciative system (Goodman 1978, 1984).The result of this study indicates that the interaction between design production and appreciation during the review processes could differ significantly. The review processes could be either linear or cyclic due to the influences from the kinds of media, the environmental discrepancies between studio and Internet, as well as cognitive thinking/memory capacity. The design production and appreciation seem to be more linear in CAD studio whereas more cyclic in the Internet environment. This distinction coincides with the complementary observations of designing as a linear process (Jones 1970; Simon 1981) or a cyclic movement (Schon and Wiggins 1992). Some phenomena during the two processes are also illustrated in detail in this paper.This study is merely a starting point of the research in design production and appreciation in the computer and network age. The future direction of investigation is to establish a theoretical model for the interaction between design production and appreciation based on current findings. The model is expected to conduct using revised protocol analysis and interviews. The other future research is to explore how design computing creativity emerge from the process of producing and appreciating.
series AVOCAAD
email aleppo@cc.nctu.edu.tw
last changed 2005/09/09 08:48

_id 56
authors Barron, Alicia and Chiarelli, Julia
year 1998
title Proyecto Para la Red de un Estudio de Arquitectura (Project for the Network of a Studio of Architecture)
source II Seminario Iberoamericano de Grafico Digital [SIGRADI Conference Proceedings / ISBN 978-97190-0-X] Mar del Plata (Argentina) 9-11 september 1998, pp. 418-425
summary A consequence of the globalization on information processes in the way in which new technologies influence on design and production processes. There is no doubt that there is an increasingly and a big change in the areas of architecture design concerning to the operational and working methodology on graphic and alphanumeric information. Now a day it is not a far away Utopia, but a soon to come reality that architects interact in a virtual manner with their individual or institutional clients in their own country, as well as in foreign countries. Keeping these considerations in mind, we elaborated this Paper in order to present one of the existing criteria for the organization of graphic information jointly with its spatial relationship. The work presented herewith shows the development of an informatic net for an ideal mega-studio which in its professional and entrepreneurial profile covers tasks such as design, construction, graphic design and representation of foreign concerns. In the net design and in the selection of equipment for computing design area are covered all the variables at every instance.
series SIGRADI
email barron@ub.edu.ar
last changed 2016/03/10 08:47

_id 07c5
authors Burry, Mark
year 1998
title Handcraft and Machine Metaphysics
source Computers in Design Studio Teaching [EAAE/eCAADe International Workshop Proceedings / ISBN 09523687-7-3] Leuven (Belgium) 13-14 November 1998, pp. 41-50
summary As the cost of 3D digitisers drops and PC price performance rises, opportunities for hand - computer co-operation improve. Architectural form may now be experimentally moulded or carved using manual techniques in close association with the computer. At any stage the model can be mechanically digitised and translated to a computer database for explorations that go beyond simple physical manipulation. In the virtual environment, the resulting forms can be rationalised using an ordering geometry or further de-rationalised. This potential for debasing intuitive, sensually haptic and responsive handwork through its translation into numerically cogent formulations is risky business. But it may also bring new and unlikely rewards. This paper considers the implications and aesthetics of negotiations between handcraft and consecutive or synchronous computer digitalisation of intentions. Two situations will be discussed and compared. The first is the nature of computer modelling and its representation per se, and the second is the relevance of using handcraft as a sponsor for computer-based manipulation and morphological experimenting.
series eCAADe
email mburry@deakin.edu.au
more http://www.eaae.be/
last changed 2000/11/21 08:11

_id 8b38
authors Do, Ellen Yi-Luen and Gross, Mark D.
year 1998
title The Sundance Lab- "Design Systems of the Future"
source ACADIA Quarterly, vol. 17, no. 4, pp. 8-10
summary The last thirty years have seen the development of powerful new tools for architects and planners: CAD, 3D modeling, digital imaging, geographic information systems, and real time animated walkthroughs. That’s just the beginning. Based on our experience with CAD tools, analysis of design practice, and an understanding of computer hardware and software, we’re out to invent the next generation of tools. We think architects should be shakers and makers, not just consumers, of computer aided design. We started the Sundance Lab (for Computing in Design and Planning) in 1993 with a few people and machines. We’ve grown to more than a dozen people (mostly undergraduate students) and a diverse interdisciplinary array of projects. We’ve worked with architects and planners, anthropologists, civil engineers, geographers, computer scientists, and electrical engineers. Our work is about the built environment: its physical form and various information involved in making and inhabiting places. We cover a wide range of topics – from design information management to virtual space, from sketch recognition to design rationale capture, to communication between designer and computer. All start from the position that design is a knowledge based and information rich activity. Explicit representations of design information (knowledge, rationale, and rules) enables us to engage in more intelligent dialogues about design. The following describes some of our projects under various rubrics.
series ACADIA
email ellendo@cmu.edu
last changed 2004/10/04 05:49

_id 3a63
authors Kaynak, O.
year 1998
title Computational intelligence: soft computing and fuzzy-neuro integration with applications
source Springer, Berlin
summary Soft computing is a consortium of computing methodologies that provide a foundation for the conception, design, and deployment of intelligent systems and aims to formalize the human ability to make rational decisions in an environment of uncertainty and imprecision. This book is based on a NATO Advanced Study Institute held in 1996 on soft computing and its applications. The distinguished contributors consider the principal constituents of soft computing, namely fuzzy logic, neurocomputing, genetic computing, and probabilistic reasoning, the relations between them, and their fusion in industrial applications. Two areas emphasized in the book are how to achieve a synergistic combination of the main constituents of soft computing and how the combination can be used to achieve a high Machine Intelligence Quotient.
series other
last changed 2003/04/23 13:14

_id ga9809
id ga9809
authors Kälviäinen, Mirja
year 1998
title The ideological basis of generative expression in design
source International Conference on Generative Art
summary This paper will discuss issues concerning the design ideology supporting the use and development of generative design. This design ideology is based on the unique qualities of craft production and on the forms or ideas from nature or the natural characteristics of materials. The main ideology presented here is the ideology of the 1980´s art craft production in Finland. It is connected with the general Finnish design ideology and with the design ideology of other western countries. The ideology for these professions is based on the common background of design principles stated in 19th century England. The early principles developed through the Arts and Crafts tradition which had a great impact on design thinking in Europe and in the United States. The strong continuity of this design ideology from 19th century England to the present computerized age can be detected. The application of these design principles through different eras shows the difference in the interpretations and in the permission of natural decorative forms. The ideology of the 1980ïs art craft in Finland supports the ideas and fulfilment of generative design in many ways. The reasons often given as the basis for making generative design with computers are in very many respects the same as the ideology for art craft. In Finland there is a strong connection between art craft and design ideology. The characteristics of craft have often been seen as the basis for industrial design skills. The main themes in the ideology of the 1980´s art craft in Finland can be compared to the ideas of generative design. The main issues in which the generative approach reflects a distinctive ideological thinking are: Way of Life: The work is the communication of the maker´s inner ideas. The concrete relationship with the environment, personality, uniqueness, communication, visionary qualities, development and growth of the maker are important. The experiments serve as a media for learning. Taste and Aesthetic Education: The real love affair is created by the non living object with the help of memories and thought. At their best objects create the basis in their stability and communication for durable human relationships. People have warm relationships especially with handmade products in which they can detect unique qualities and the feeling that the product has been made solely for them. Counter-culture: The aim of the work is to produce alternatives for technoburocracy and mechanical production and to bring subjective and unique experiences into the customerïs monotonious life. This ideology rejects the usual standardized mass production of our times. Mythical character: There is a metamorphosis in the birth of the product. In many ways the design process is about birth and growth. The creative process is a development story of the maker. The complexity of communication is the expression of the moments that have been lived. If you can sense the process of making in the product it makes it more real and nearer to life. Each piece of wood has its own beauty. Before you can work with it you must find the deep soul of its quality. The distinctive traits of the material, technique and the object are an essential part of the metamorphosis which brings the product into life. The form is not only for formïs sake but for other purposes, too. You cannot find loose forms in nature. Products have their beginnings in the material and are a part of the nature. This art craft ideology that supports the ideas of generative design can be applied either to the hand made crafts production or to the production exploiting new technology. The unique characteristics of craft and the expression of the material based development are a way to broaden the expression and forms of industrial products. However, for a crafts person it is not meaningful to fill the world with objects. In generative, computer based production this is possible. But maybe the production of unique pieces is still slower and makes the industrial production in that sense more ecological. People will be more attached to personal and unique objects, and thus the life cycle of the objects produced will be longer.
series other
email mkalviai@kacd.pspt.fi
more http://www.generativeart.com/
last changed 2003/08/07 15:25

_id 2edf
authors Levy, Pierre
year 1998
title Becoming Virtual, Reality in the Digital Age
source Plenum Trade, New York
summary Pierre Levy takes a fresh look at the whole idea of what is virtual. He's responding to the widespread belief, and sometimes even panic, that a digital society with emphasis on virtual interactions is necessarily depersonalizing. He takes particular exception to the notion that "virtual" and "real" are opposites. Instead, Levy argues that virtuality is one of four modes of existence, the rest of which he describes as reality, possibility, and actuality. Each is defined in terms of its relationship with its environment. In following Levy's world view, you may find that he interprets some or all of those terms in ways you're not used to, but the result is an interesting new approach to what it means to be part of an increasingly digital world. He examines the virtualization of several elements our society: the corporal body, text, the economy, language, technology, contracts, intelligence, subjects, and objects. What he finds is not a destruction of the personal so much as a transformation. Virtualization adds to, but does not replace, the real, the possible, and the actual. By understanding what virtualization means and involves, Levy believes that society will gain a greater variety of options for interaction in all areas. Becoming Virtual is a serious philosophical work, dense with ideas.
series other
last changed 2003/04/23 13:14

_id 6eb1
authors Lloyd, P. and Deasley, P.
year 1998
title Ethnographic description of design networks
source Automation in Construction 7 (2-3) (1998) pp. 101-110
summary One of the central themes of a commercial design process is communication. Complex design artefacts, rather than being rationally thought out by individuals, evolve through designers negotiating and bargaining with clients and peers alike. Problems are resolved through discussion and explanation. The 'design process,' as a reified entity, cannot be apprehended by any individual. Understanding of the process is spread over a social network, and through the narratives and discourses that are forged from day to day. This is design as a social process. The focus of the present paper is twofold. First, we wish to establish the field of ethnography as a particularly useful method of describing design in its social form. Secondly, we describe the results of a design case study we have carried out, using ethnographic methods, in an aerospace manufacturing company. We observe informal structures determining work activity, and the use of subtle `role' playing in problem-solving.
series journal paper
more http://www.elsevier.com/locate/autcon
last changed 2003/05/15 19:22

_id 88f5
authors Matalasow, M.E.
year 1998
title Once More on the Role of Different Methods and Means of the Analysis
source Cyber-Real Design [Conference Proceedings / ISBN 83-905377-2-9] Bialystock (Poland), 23-25 April 1998, pp. 127-140
summary The correct evaluation of design proposals both by experts and future users, demands their presentation with regard to the real environment and real conditions of observation. It is interesting when analysing designs in complicated town planning situations, and becomes especially important in CIVILIZED SOCIETIES, when it concerns historic territories. Analytical works, connected with preparation of the information, corresponding in the greatest degree to the real conditions and previous scientific investigations, are carried out in a number of European educational institutions (Technical universities in Delft, Tampere, Stuttgart, etc.), corresponding to the Laboratory of videosystems of the Moscow Architectural Institute (State Academy). Their results are periodically reported at conferences of the European Architectural Endoscopy Association, which in keeping with its name and status is occupied with problems of the most real reflection of the designed space. I suppose that due to the objective necessity at our future conference (the 4th conference of the EAEA) we shall discuss not tools, but methods and ways ensuring correct vision of the designed space. Because of this and the present state of the technique of presentation and also recollecting my words at the previous conferences, that technical means are only tools but not an ideology of the creative activities in designing, it is reasonable once more (or maybe not once) to return to the "accompanying" means, which sometimes, and in a historical environment, i want to underline again, in a CIVILIZED SOCIETY, can and must become decisive. And it is especially important for the simulation means to take into consideration spatial and temporal factors.
series EAEA
more http://info.tuwien.ac.at/eaea
last changed 2005/09/09 08:43

_id c16f
id c16f
authors McCall, Ray
year 1998
title World Wide Presentation and Critique of Design Proposals with the Web-PHIDIAS System
source Digital Design Studios: Do Computers Make a Difference? [ACADIA Conference Proceedings / ISBN 1-880250-07-1] Québec City (Canada) October 22-25, 1998, pp. 254-265
summary In this paper we describe Web-PHIDIAS, a network-centric design environment based on the PHIDIAS HyperCAD system. Web-PHIDIAS uses the backend of PHIDIAS as a hypermedia database engine to serve up VRML models, HTML pages and Java applets over the Web. In particular, it uses the Web (1) to present 3D models of design proposals using VRML; (2) to present rationale for these proposals; and (3) to get comments on the proposals and their rationale from viewers anywhere in the world. These comments are automatically stored in a server-side hypermedia database where they are linked to the models and rationale that they refer to. The proposal presenter can opt to have Web-PHIDIAS make these comments part of the public presentation so that other viewers throughout the world can comment on the comments. Perhaps most important is the fact that a Web site implemented with Web-PHIDIAS has no persistent HTML pages or forms. All presentations of data over the Web are created “on the fly” by the server-side part of Web-PHIDIAS using HTML and Java. User input is obtained using an authoring interface created in Java.
series ACADIA
email mccall@phidias.colorado.edu
last changed 2004/03/18 08:36

_id 34
authors Regot, Joaquin and De Mesa, Andres
year 1998
title Modelado de Superficies Complejas. La Casa Mila de Antonio Gaudi (Modeling of Complex Surfaces. The House Mila of Antonio Gaudi)
source II Seminario Iberoamericano de Grafico Digital [SIGRADI Conference Proceedings / ISBN 978-97190-0-X] Mar del Plata (Argentina) 9-11 september 1998, pp. 258-265
summary This paper explains the three-dimensional representation procedure of one fragment of Mil· house elevation designed by the architect Antoni GaudÌ. The generation process of an architectonic virtual model constituted by free form surfaces like this, represents a paradigm of high level difficulty in CAD modeling. The main objective of our research has been not only construct a model that shows the complex form of its architecture, but also verify the performance of the different tools supported by computer aided design programs in the management of surface modeling.We obtained an accurate information of the real surface elevation with a photogrammetric survey using contour lines. The transformation of this kind of data in a three-dimensional model was not immediately Thus, we have had study different ways to generate the three-dimensional model solution. The process began with the construction of different surface models supported by analytic functions, but the obtained surfaces made with this system were deficient and not too much satisfactory. That's why, we use a polyhedron mesh surface method in order to improve these results.in spite of this methodology reductive performance, (compared with analytic function systems), the obtained surface demonstrated that this technique was the best way to satisfy the requirement of a free form surface previously established as we want to construct. From this point the principal problem was generate a surface defined by two-dimensional data, (contour lines), applying an automatic process sufficiently fast to compete with the analytic function systems.To satisfy the demand was necessary make complementary software to improve the process and allow more fluidity to resolve this typology of surfaces. We achieved this phase thanks to Joan Miquel Quilez collaboration and the constant dedication in the elaboration of complementary software to computer aided design. Finally, the introduction of render systems with lights, shadows, textures and reflected images, allowed show the studied elevation area of Mil· house with more accuracy. Thus, the limits and contours of the finally surface were more evident and help us to known the properties of a non- materialized free form surface successfully.
series SIGRADI
email joaquin.regot@ega1.upc.es
last changed 2016/03/10 08:58

_id cf9d
authors Yeung, C., Cheung, L., Yen, J. and Cheng, C.
year 1998
title Virtual Classroom for Architecture
source CAADRIA ‘98 [Proceedings of The Third Conference on Computer Aided Architectural Design Research in Asia / ISBN 4-907662-009] Osaka (Japan) 22-24 April 1998, pp. 93-102
summary Over the past few years, we have seen that the evolution of the Internet and World Wide Web technologies have significantly enhanced the global communication and collaboration. People, no matter where they are, are virtually getting closer and closer. The barriers that came from time and distance have been partially removed by the use of such technologies. Internet and WWW are not just technology, they are an environment or space. With such breakthrough in technologies, a new paradigm in education is there. The education very differently from what we have now. This paper presents an Internet-based environment to support teaching and learning in architecture education. We will discuss the design concept and how to integrate the technology and knowledge-based techniques to implement the learning environment for architecture students. Architecture is a very specific discipline which consists of the knowledge from arts, sciences, engineering, and more. One of the focuses in architecture education is to teach how to express and communicate design ideas with the multimedia or other technologies, such as, virtual reality (VR). A case study presented in this paper is about how to deliver and present the ancient Chinese temples and its bracket set systems from the server to the browsers to support distance teaching. That is, students and teachers may not be in the same location, but they are able to watch the same objects and to exchange ideas. We will discuss how to use multimedia technologies to illustrate how a temple and its bracket set differ from dynasties to dynasties and introduce its basic properties to the viewers. Moreover, we will discuss how we organize and handle 3-dimensional objects with such system. Many people are still arguing about whether Internet-based teaching or a real classroom setting is better. We are not implying that Internet-based teaching is superior or predicting that it will dominate the teaching in the near future. However, we strongly believe that it is just another alternative to express and represent architectural thinking to over some of the barriers that come from time and distance. We believe, that it is always true, that the Internet-based teaching may provide both teachers and learners greater flexibility and to support more International collaboration. That is, regardless where the students or teachers are, they can always participate in learning or teaching and make teaching and learning much more rich and interesting.
keywords Virtual Classroom
series CAADRIA
email csky@eee.hku.hk
more http://www.caadria.org
last changed 1998/12/02 13:44

_id e336
authors Achten, H., Roelen, W., Boekholt, J.-Th., Turksma, A. and Jessurun, J.
year 1999
title Virtual Reality in the Design Studio: The Eindhoven Perspective
source Architectural Computing from Turing to 2000 [eCAADe Conference Proceedings / ISBN 0-9523687-5-7] Liverpool (UK) 15-17 September 1999, pp. 169-177
summary Since 1991 Virtual Reality has been used in student projects in the Building Information Technology group. It started as an experimental tool to assess the impact of VR technology in design, using the environment of the associated Calibre Institute. The technology was further developed in Calibre to become an important presentation tool for assessing design variants and final design solutions. However, it was only sporadically used in student projects. A major shift occurred in 1997 with a number of student projects in which various computer technologies including VR were used in the whole of the design process. In 1998, the new Design Systems group started a design studio with the explicit aim to integrate VR in the whole design process. The teaching effort was combined with the research program that investigates VR as a design support environment. This has lead to increasing number of innovative student projects. The paper describes the context and history of VR in Eindhoven and presents the current set-UP of the studio. It discusses the impact of the technology on the design process and outlines pedagogical issues in the studio work.
keywords Virtual Reality, Design Studio, Student Projects
series eCAADe
email h.h.achten@bwk.tue.nl
last changed 2003/11/21 14:15

_id ddss9801
id ddss9801
authors Achten, Henri and Leeuwen, Jos van
year 1998
title A Feature-Based Description Technique for Design Processes: A Case Study
source Timmermans, Harry (Ed.), Fourth Design and Decision Support Systems in Architecture and Urban Planning Maastricht, the Netherlands), ISBN 90-6814-081-7, July 26-29, 1998
summary In order to develop appropriate tools for decision support in design processes, it is necessary to found them on an understanding of design. Analytical techniques of design processes that have a direct relationship with tool development can enhance design support systems development. The paper focuses on a design support system in the VR-DIS research program. The aim of this research program is to develop insight in the architectural design process and to establish design tools for architectsworking in Virtual Reality. The basic approach for data modelling in VR in this research is based on an extension of the Feature Based Modelling paradigm taken from design in mechanical engineering. The computer model of the design in the system is a Feature-based model. This paper describes design processes in terms of changes in the Feature-based model of the design. For this purpose, a case of a house design is used. Drawings in the conceptual design phase up to the preliminary design phase arestudied. Each state of the drawings is described in terms of a Feature-model. Particular design actions such as creation of spaces, definition of architectural elements, and changes during the design process can be expressed in terms of changes in the Feature-model. Because of the use of Features, the changes can be formalised in the VR-DIS system. The description in terms of Features offers an analytical toolthat leads to a functional brief for design support tools. The paper ends with a discussion of implications and future work.
series DDSS
last changed 2003/11/21 14:15

_id 6433
authors Agranovich-Ponomarieva, E. and Litvinova, A.
year 1998
title The "Real Space - Cyberspace" Paradigm
source Cyber-Real Design [Conference Proceedings / ISBN 83-905377-2-9] Bialystock (Poland), 23-25 April 1998, pp. 141-145
summary In a chain of "real - perceived - imagined space" the computer reduces to a uniform model of only real and imagined space. It cannot undertake man's function or it cannot build the perception model. However, perception assumes physiological perception, psychological estimation and understanding, and emotional ho-experience. For a person the seizing of space during perception is constructing temporary spatial images and their development. The communicative relations of the person with environment are established during revealing internal and external structural communications and the interior represents the message, unwrapped in space and perceived in time. The real space is formed under influence of the sum of conceptual restrictions. The character of these restrictions depends on a super idea, a type of an initial situation, character of installations and on social-cultural stereotypes of the author. Without this stage transition to real architectural object is impossible. Result of activity of an architect at this stage becomes creation hypothetical cyberspace, with its own peculiarities and laws.
series plCAD
last changed 1999/04/08 15:16

_id ddss9802
id ddss9802
authors Akin, O., Aygen, Z., Cumming, M., Donia, M., Sen, R. and Zhang, Y.
year 1998
title Computational Specification of Building Requirements in theEarly Stages of Design
source Timmermans, Harry (Ed.), Fourth Design and Decision Support Systems in Architecture and Urban Planning Maastricht, the Netherlands), ISBN 90-6814-081-7, July 26-29, 1998
summary We have been exploring computational techniques to help building designers to specify design requirements during the early stages of design. In the past, little has been accomplished in this area either in terms of innovative computational technologies or the improvement of design performance.The prospect of improving design productivity and creating a seamless process between requirements specification and formal design are our primary motivations. This research has been conducted as partof a larger project entitled SEED (Software Environment to Support Early Phases in Building Design). SEED features an open-ended modular architecture, where each module provides support for a design activity that takes place in early design stages. Each module is supported by a database to store and retrieve information, as well as a user interface to support the interaction with designers. The module described in this paper, SEED-Pro (the architectural programming module of SEED), is a workingprototype for building design requirements specification. It can be used by other modules in SEED or by design systems in other domains, such as mechanical engineering, civil engineering, industrial designand electrical engineering. Our approach to SEED-Pro is divided into two phases: core, and support functionalities. The core functionalities operate in an interactive mode relying on a case-based approach to retrieve and adapt complex specification records to the problem at hand. The supportfunctionalities include the case-base, the data-base, and the standards processing environment for building specification tasks. Our findings indicate that SEED-Pro: (1) is a tool that structures the unstructured domain of design requirements; (2) enables the integration of design requirements with the rest of the design process, (3) leads to the creation of complex case-bases and (4) enables the observation of their performance in the context of real world design problems.
series DDSS
last changed 2003/11/21 14:15

_id ddssar0203
id ddssar0203
authors Alkass, Sabah and Jrade, Ahmad
year 2002
title A Web-Based Virtual Reality Model for Preliminary Estimates of Hi-Rise Building Projects
source Timmermans, Harry (Ed.), Sixth Design and Decision Support Systems in Architecture and Urban Planning - Part one: Architecture Proceedings Avegoor, the Netherlands), 2002
summary Cost estimating of a construction project at its early stage is considered to be very important task since it will be used as a base to commit or otherwise not to commit funds to that project. Preparation of a reliableand realistic preliminary estimate to aid the decision makers to commit funds for a specific project is a complicated assignment. Traditional methods and operations produced unsatisfactory aid due to lack ofaccuracy especially in the pre-design stage of a project. This participates in the increase of percentage of bankruptcy in the construction industry, which has dramatically climbed up and ranked as 15 percent of thewhole bankruptcies claimed in Canada (Statistic Canada 1998). This paper presents a methodology for developing and a Web-based model to automate preliminary cost estimates for hi-rise buildings. This is achieved by integrating a database with design drawings in a Virtual Reality (VR) environment. The model will automatically generate preliminary estimates after modifying a 3D CAD drawing. It provides the user the option to visualize and simulate the drawing and its cost data through VR environment. Having done that, it will allow owners, architects and cost engineers to view a constructed building project, change its geometric objects and shapes, and accordingly generate a new conceptual cost estimate.
series DDSS
last changed 2003/11/21 14:15

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 26HOMELOGIN (you are user _anon_105817 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002