CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 615

_id cf2011_p109
id cf2011_p109
authors Abdelmohsen, Sherif; Lee Jinkook, Eastman Chuck
year 2011
title Automated Cost Analysis of Concept Design BIM Models
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 403-418.
summary AUTOMATED COST ANALYSIS OF CONCEPT DESIGN BIM MODELS Interoperability: BIM models and cost models This paper introduces the automated cost analysis developed for the General Services Administration (GSA) and the analysis results of a case study involving a concept design courthouse BIM model. The purpose of this study is to investigate interoperability issues related to integrating design and analysis tools; specifically BIM models and cost models. Previous efforts to generate cost estimates from BIM models have focused on developing two necessary but disjoint processes: 1) extracting accurate quantity take off data from BIM models, and 2) manipulating cost analysis results to provide informative feedback. Some recent efforts involve developing detailed definitions, enhanced IFC-based formats and in-house standards for assemblies that encompass building models (e.g. US Corps of Engineers). Some commercial applications enhance the level of detail associated to BIM objects with assembly descriptions to produce lightweight BIM models that can be used by different applications for various purposes (e.g. Autodesk for design review, Navisworks for scheduling, Innovaya for visual estimating, etc.). This study suggests the integration of design and analysis tools by means of managing all building data in one shared repository accessible to multiple domains in the AEC industry (Eastman, 1999; Eastman et al., 2008; authors, 2010). Our approach aims at providing an integrated platform that incorporates a quantity take off extraction method from IFC models, a cost analysis model, and a comprehensive cost reporting scheme, using the Solibri Model Checker (SMC) development environment. Approach As part of the effort to improve the performance of federal buildings, GSA evaluates concept design alternatives based on their compliance with specific requirements, including cost analysis. Two basic challenges emerge in the process of automating cost analysis for BIM models: 1) At this early concept design stage, only minimal information is available to produce a reliable analysis, such as space names and areas, and building gross area, 2) design alternatives share a lot of programmatic requirements such as location, functional spaces and other data. It is thus crucial to integrate other factors that contribute to substantial cost differences such as perimeter, and exterior wall and roof areas. These are extracted from BIM models using IFC data and input through XML into the Parametric Cost Engineering System (PACES, 2010) software to generate cost analysis reports. PACES uses this limited dataset at a conceptual stage and RSMeans (2010) data to infer cost assemblies at different levels of detail. Functionalities Cost model import module The cost model import module has three main functionalities: generating the input dataset necessary for the cost model, performing a semantic mapping between building type specific names and name aggregation structures in PACES known as functional space areas (FSAs), and managing cost data external to the BIM model, such as location and construction duration. The module computes building data such as footprint, gross area, perimeter, external wall and roof area and building space areas. This data is generated through SMC in the form of an XML file and imported into PACES. Reporting module The reporting module uses the cost report generated by PACES to develop a comprehensive report in the form of an excel spreadsheet. This report consists of a systems-elemental estimate that shows the main systems of the building in terms of UniFormat categories, escalation, markups, overhead and conditions, a UniFormat Level III report, and a cost breakdown that provides a summary of material, equipment, labor and total costs. Building parameters are integrated in the report to provide insight on the variations among design alternatives.
keywords building information modeling, interoperability, cost analysis, IFC
series CAAD Futures
email sherif.morad@gatech.edu
last changed 2012/02/11 18:21

_id edf5
authors Arnold, J.A., Teicholz, P. and Kunz, J.
year 1999
title An approach for the interoperation of web-distributed applications with a design model
source Automation in Construction 8 (3) (1999) pp. 291-303
summary This paper defines the data and inference requirements for the integration of analysis applications with a product model described by a CAD/CAE application. Application input conditions often require sets of complex data that may be considered views of a product model database. We introduce a method that is compatible with the STEP and PLIB product description standards to define an intermediate model that selects, extracts, and validates views of information from a product model to serve as input for an engineering CAD/CAE application. The intermediate model framework was built and tested in a software prototype, the Internet Broker for Engineering Services (IBES). The first research case for IBES integrates applications that specify certain components, for example pumps and valves, with a CAD/CAE application. This paper therefore explores a sub-set of the general problem of integrating product data semantics between various engineering applications. The IBES integration method provides support for a general set of services that effectively assist interpretation and validate information from a product model for an engineering purpose. Such methods can enable application interoperation for the automation of typical engineering tasks, such as component specification and procurement.
series journal paper
more http://www.elsevier.com/locate/autcon
last changed 2003/05/15 19:22

_id a8f2
authors Becker, R.
year 1999
title Research and development needs for better implementation of the performance concept in building
source Automation in Construction 8 (4) (1999) pp. 525-532
summary Gaps in basic knowledge, inadequacies in the procedural infrastructure and lack of working tools, that still prevent a more systematic application of the performance concept throughout the building process, are identified. One of the main conclusions is that, despite the vast knowledge accumulated during the years in the fields of ergonometrics, human needs, human factor engineering, architectural design, structural analysis, building physics, building materials and durability analysis, this knowledge is not applied systematically during the building process. The situation is attributed to lack of tools for some of the decision making phases in the process, and to the lack of a common, preferably computerized, design platform that would ensure a comprehensive and quantitative approach to all the relevant performance attributes, link smoothly between the various phases along the project development, and minimizes bias caused by human experts.
series journal paper
more http://www.elsevier.com/locate/autcon
last changed 2003/05/15 19:22

_id 616c
authors Bentley, Peter J.
year 1999
title The Future of Evolutionary Design Research
source AVOCAAD Second International Conference [AVOCAAD Conference Proceedings / ISBN 90-76101-02-07] Brussels (Belgium) 8-10 April 1999, pp. 349-350
summary The use of evolutionary algorithms to optimise designs is now well known, and well understood. The literature is overflowing with examples of designs that bear the hallmark of evolutionary optimisation: bridges, cranes, electricity pylons, electric motors, engine blocks, flywheels, satellite booms -the list is extensive and evergrowing. But although the optimisation of engineering designs is perhaps the most practical and commercially beneficial form of evolutionary design for industry, such applications do not take advantage of the full potential of evolutionary design. Current research is now exploring how the related areas of evolutionary design such as evolutionary art, music and the evolution of artificial life can aid in the creation of new designs. By employing techniques from these fields, researchers are now moving away from straight optimisation, and are beginning to experiment with explorative approaches. Instead of using evolution as an optimiser, evolution is now beginning to be seen as an aid to creativity -providing new forms, new structures and even new concepts for designers.
series AVOCAAD
email P.Bentley@cs.ucl.ac.uk
last changed 2005/09/09 08:48

_id avocaad_2001_02
id avocaad_2001_02
authors Cheng-Yuan Lin, Yu-Tung Liu
year 2001
title A digital Procedure of Building Construction: A practical project
source AVOCAAD - ADDED VALUE OF COMPUTER AIDED ARCHITECTURAL DESIGN, Nys Koenraad, Provoost Tom, Verbeke Johan, Verleye Johan (Eds.), (2001) Hogeschool voor Wetenschap en Kunst - Departement Architectuur Sint-Lucas, Campus Brussel, ISBN 80-76101-05-1
summary In earlier times in which computers have not yet been developed well, there has been some researches regarding representation using conventional media (Gombrich, 1960; Arnheim, 1970). For ancient architects, the design process was described abstractly by text (Hewitt, 1985; Cable, 1983); the process evolved from unselfconscious to conscious ways (Alexander, 1964). Till the appearance of 2D drawings, these drawings could only express abstract visual thinking and visually conceptualized vocabulary (Goldschmidt, 1999). Then with the massive use of physical models in the Renaissance, the form and space of architecture was given better precision (Millon, 1994). Researches continued their attempts to identify the nature of different design tools (Eastman and Fereshe, 1994). Simon (1981) figured out that human increasingly relies on other specialists, computational agents, and materials referred to augment their cognitive abilities. This discourse was verified by recent research on conception of design and the expression using digital technologies (McCullough, 1996; Perez-Gomez and Pelletier, 1997). While other design tools did not change as much as representation (Panofsky, 1991; Koch, 1997), the involvement of computers in conventional architecture design arouses a new design thinking of digital architecture (Liu, 1996; Krawczyk, 1997; Murray, 1997; Wertheim, 1999). The notion of the link between ideas and media is emphasized throughout various fields, such as architectural education (Radford, 2000), Internet, and restoration of historical architecture (Potier et al., 2000). Information technology is also an important tool for civil engineering projects (Choi and Ibbs, 1989). Compared with conventional design media, computers avoid some errors in the process (Zaera, 1997). However, most of the application of computers to construction is restricted to simulations in building process (Halpin, 1990). It is worth studying how to employ computer technology meaningfully to bring significant changes to concept stage during the process of building construction (Madazo, 2000; Dave, 2000) and communication (Haymaker, 2000).In architectural design, concept design was achieved through drawings and models (Mitchell, 1997), while the working drawings and even shop drawings were brewed and communicated through drawings only. However, the most effective method of shaping building elements is to build models by computer (Madrazo, 1999). With the trend of 3D visualization (Johnson and Clayton, 1998) and the difference of designing between the physical environment and virtual environment (Maher et al. 2000), we intend to study the possibilities of using digital models, in addition to drawings, as a critical media in the conceptual stage of building construction process in the near future (just as the critical role that physical models played in early design process in the Renaissance). This research is combined with two practical building projects, following the progress of construction by using digital models and animations to simulate the structural layouts of the projects. We also tried to solve the complicated and even conflicting problems in the detail and piping design process through an easily accessible and precise interface. An attempt was made to delineate the hierarchy of the elements in a single structural and constructional system, and the corresponding relations among the systems. Since building construction is often complicated and even conflicting, precision needed to complete the projects can not be based merely on 2D drawings with some imagination. The purpose of this paper is to describe all the related elements according to precision and correctness, to discuss every possibility of different thinking in design of electric-mechanical engineering, to receive feedback from the construction projects in the real world, and to compare the digital models with conventional drawings.Through the application of this research, the subtle relations between the conventional drawings and digital models can be used in the area of building construction. Moreover, a theoretical model and standard process is proposed by using conventional drawings, digital models and physical buildings. By introducing the intervention of digital media in design process of working drawings and shop drawings, there is an opportune chance to use the digital media as a prominent design tool. This study extends the use of digital model and animation from design process to construction process. However, the entire construction process involves various details and exceptions, which are not discussed in this paper. These limitations should be explored in future studies.
series AVOCAAD
email aleppo@cc.nctu.edu.tw
last changed 2005/09/09 08:48

_id 2524
authors Corrao, R. and Fulantelli, G.
year 1999
title The Web to Support Creative Design in Architecture
source AVOCAAD Second International Conference [AVOCAAD Conference Proceedings / ISBN 90-76101-02-07] Brussels (Belgium) 8-10 April 1999, pp. 275-283
summary The use of the web in a didactic context appears to be extremely meaningful and effective. In Architecture, the web has huge potential: among others, it has the ability to gather an enormous amount of information, and the ability to create an active learning environment, one which affords the learner opportunities to engage and think. The paper reports on a Web Based Instruction (WBI) system developed at the Italian National Research Council -Institute for Educational and Training Technologies- to support design activities for students of the Italian Faculty of Architecture and Civil Engineering. Original features of the system allow students to study and design in an effective way. Specifically, a particular set of "virtual stationery items" has been implemented and integrated in the system to help students, enrolled on on-line courses, to mimic important traditional study activities, still gaining all the advantages of using the Web. These tools are integrated with communication tools in the same learning environment. A very important feature of the WBI system is that authorised users can enrich the information network in the system, by adding new pages and new links. In the paper we report on the structure of the system, with particular focus on the information domain. Some of the "working tools" which allow users to simulate traditional study activities and the hypertext extension mechanism are also described.
series AVOCAAD
last changed 2005/09/09 08:48

_id ecaade2014_146
id ecaade2014_146
authors Davide Ventura and Matteo Baldassari
year 2014
title Grow: Generative Responsive Object for Web-based design - Methodology for generative design and interactive prototyping
source Thompson, Emine Mine (ed.), Fusion - Proceedings of the 32nd eCAADe Conference - Volume 2, Department of Architecture and Built Environment, Faculty of Engineering and Environment, Newcastle upon Tyne, England, UK, 10-12 September 2014, pp. 587-594
summary This paper is part of the research on Generative Design and is inspired by the ideas spread by the following paradigms: the Internet of Things (Auto-ID Center, 1999) and the Pervasive/Ubiquitous Computing (Weiser, 1993). Particularly, the research describes a number of case studies and, in detail, the experimental prototype of an interactive-design object: “Grow-1”. The general assumptions of the study are as follows: a) Developing the experimental prototype of a smart-design object (Figure 1) in terms of interaction with man, with regard to the specific conditions of the indoor environment as well as in relation to the internet/web platforms. b) Setting up a project research based on the principles of Generative Design.c) Formulating and adopting a methodology where computational design techniques and interactive prototyping ones converge, in line with the principles spread by the new paradigms like the Internet of Things.
wos WOS:000361385100061
keywords Responsive environments and smart spaces; ubiquitous pervasive computing; internet of things; generative design; parametric modelling
series eCAADe
email davide.ventura@uniroma1.it
last changed 2016/05/16 09:08

_id 125a
authors Dikbas, Attila
year 1999
title An Evaluating Model for the Usage of Web-based Information Technology in Computer Aided Architectural Design and Engineering Education
source Architectural Computing from Turing to 2000 [eCAADe Conference Proceedings / ISBN 0-9523687-5-7] Liverpool (UK) 15-17 September 1999, pp. 349-352
summary New technologies often reshape expectations, needs and Opportunities so as to develop strategic Plans for the implementation of Information Techniques in education and research. The widespread acceptance of the internet and more specifically the World Wide Web (WWW) has raised the awareness of educators to the potential for online education, virtual classrooms and even virtual universities. With the advent of computer mediated communication, especially the widespread adoption of the web as a publishing medium, educators see the advantages and potential of delivering educational material over the Internet. The Web offers an excellent medium for content delivery with full text, colour graphics support and hyperlinks. The Purpose of this paper is to present a model for the usage of web-based information technology in computer aided architectural design and engineering education. It involves the key features of a full educational system that is capable of offering the teacher and the student flexibility with which to approach their teaching and learning tasks in ways most appropriate to the architectural design and engineering education. Web-based educational system aims at creating quality in on-line educational materials taking collaboration, support, new skills, and, most of all, time. The paper concludes with a discussion of the benefits of such an education system suggesting directions for further work needed to improve the quality of architectural design and engineering education.
keywords Web-based Information Technology, Online Education, Virtual Campus, Computer Aided Architectural Design, Engineering Education
series eCAADe
last changed 1999/10/10 12:53

_id 993c
authors Fruchter, Renate
year 1999
title A/E/C Teamwork: A Collaborative Design and Learning Space
source Journal of Computing in Civil Engineering -- October 1999 -- Volume 13, Issue 4, pp. 261-269
summary This paper describes an ongoing effort focused on combined research and curriculum development for multidisciplinary, geographically distributed architecture/engineering/construction (A/E/C) teamwork. Itpresents a model for a distributed A/E/C learning environment and an Internet-based Web-mediated collaboration tool kit. The distributed learning environment includes six universities from Europe, Japan, andthe United States. The tool kit is aimed to assist team members and owners (1) capture and share knowledge and information related to a specific project; (2) navigate through the archived knowledge andinformation; and (3) evaluate and explain the product's performance. The A/E/C course offered at Stanford University acts as a testbed for cutting-edge information technologies and a forum to teach newgenerations of professionals how to team up with practitioners from other disciplines and take advantage of information technology to produce a better, faster, more economical product. The paper presents newassessment metrics to monitor students' cross-disciplinary learning experience and track programmatic changes. The paper concludes with challenges and quandaries regarding the impact of informationtechnologies on team performance and behavior.
series journal paper
last changed 2003/05/15 19:45

_id 0e56
authors Gero, John S. and Shi, Xiao-Guang
year 1999
title Design Development Based on an Analogy with Developmental Biology
source CAADRIA '99 [Proceedings of The Fourth Conference on Computer Aided Architectural Design Research in Asia / ISBN 7-5439-1233-3] Shanghai (China) 5-7 May 1999, pp. 253-264
summary This paper introduces the commonality between diversity in the biological world and diversity in artifact design. It proposes a computational model of design development based on the analogy with the phenomena and principles of developmental biology. The model is feature based and is capable of varying design in logic, geometry, attribute and phase. Examples demonstrate this biological analogy and its benefits for design development.
series CAADRIA
email john@arch.usyd.edu.au, guang@arch.usyd.edu.au
last changed 2000/01/13 11:13

_id ca7b
authors Howes, Jaki
year 1999
title IT or not IT? An Examination of IT Use in an Experimental Multi-disciplinary Teamwork Situation
source Architectural Computing from Turing to 2000 [eCAADe Conference Proceedings / ISBN 0-9523687-5-7] Liverpool (UK) 15-17 September 1999, pp. 370-373
summary Leeds Metropolitan University is well placed to carry out research into multi-disciplinary team-working, as all the design and construction disciplines are housed in one faculty. Staff have set up an experimental project, TIME IT (Team-working in Multi-disciplinary Environments using IT) which examines ways of working in the design/construction process and how IT is used when there is no commercial pressure. Four groups of four students, one graduate diploma architect, and one final year student from each of Civil Engineering, Construction Management and Quantity Surveying have been working on feasibility studies for projects that are based on completed schemes or have been devised by collaborators in the Construction Industry. Students have been asked to produce a PowerPoint presentation, in up to five working days, of a design scheme, with costs, structural analysis and construction programme. The students are not assessed on the quality of the product, but on their own ability to monitor the process and use of IT. Despite this, aggressive competition evolved between the teams to produce the 'best' design. Five projects were run in the 1998/99 session. A dedicated IT suite has been provided; each group of students had exclusive use of a machine. They were not told how to approach the projects nor when to use the available technology, but were asked to keep the use of paper to a minimum and to keep all their work on the server, so that it could be monitored externally. Not so. They plotted the AO drawings of an existing building that had been provided on the server. They like paper - they can scribble on it, fold it, tear it and throw it at one another.
keywords IT, Multi-disciplinary, Teamwork
series eCAADe
email J.Howes@imu.ac.uk
last changed 1999/10/10 12:52

_id e2ea
authors Lee, Hwa-Ryong
year 1999
title The Changing Face of Architectural Computing Research
source Architectural Computing from Turing to 2000 [eCAADe Conference Proceedings / ISBN 0-9523687-5-7] Liverpool (UK) 15-17 September 1999, pp. 11-17
summary This paper examines the existing commercial and on-going research computer applications for architectural design. It investigates their uses, predictions and limitations; and reviews the teleology, technologies and theories exploited for computerising design. Finally, I will discuss two trends in the developments of CAAD, and present the new directions in CAAD research. This study will be based on understanding the computer's roles in designing, and further on establishing a new theoretical paradigm for mediating a computer system.
keywords Historical Context, Theoretical Paradigms
series eCAADe
email hlee@moe.go.kr
last changed 1999/10/10 12:53

_id d4a5
authors Pratini, Edison
year 1999
title Modeling with Gestures: The 3D Sketchmaker
source ACADIA Quarterly, vol. 18, no. 1, pp. 10-11
summary The 3D SketchMaker Project has developed two prototypes for a gestural 3D sketching system to be used in the earliest phases of the design process. The goal of this ongoing research is to provide architects, and other designers involved in object conception, with a 3D gestural instrument that takes advantage of new virtual reality resources and is more naturalthan using the mouse, less difficult than learning complex software and less abstract than manipulating 2D entities on orthogonal projections. The focus of this project is on the input interface, taking into consideration two factors: First, for many architects and designers, one of the main reasons for not using 3D modeling from the very beginning of the design process is that both current hardware and software are hardly appropriate to do the spontaneous and quick drawings that are used to assist in conceptualizing their objects.
series ACADIA
email pratini@psu.edu
last changed 2002/12/14 08:21

_id e199
authors Simondetti, Alvise
year 1999
title Remote Computer Generated Physical Prototyping Based Design
source AVOCAAD Second International Conference [AVOCAAD Conference Proceedings / ISBN 90-76101-02-07] Brussels (Belgium) 8-10 April 1999, pp. 229-236
summary This research explores some of the opportunities offered by the field of computer aided design. It differs from much of the research in the field in the sense that it extends beyond the boundaries of the computer screen by building and testing a computational and communication design environment made of computers, computer peripherals and digital communication devices. From our observation of the designer's interaction with the computer generated physical prototyping systems we were able to confirm the unique haptic feedback and understanding of complex three- dimensional geometry. We also found limitations of the environment in relation to evolutionary design. It was clear from those experiments with algorithmically generated design alternatives that potentially terrific opportunities lies in their combination with computer generated physical prototypes and manufacturing systems.
series AVOCAAD
last changed 2005/09/09 08:48

_id 44c0
authors Van Leeuwen, Jos P.
year 1999
title Modelling architectural design information by features : an approach to dynamic product modelling for application in architectural design
source Eindhoven University of Technology
summary Architectural design, like many other human activities, benefits more and more from the ongoing development of information and communication technologies. The traditional paper documents for the representation and communication of design are now replaced by digital media. CAD systems have replaced the drawing board and knowledge systems are used to integrate expert knowledge in the design process. Product modelling is one of the most promising approaches in the developments of the last two decades, aiming in the architectural context at the representation and communication of the information related to a building in all its aspects and during its complete life-cycle. However, after studying both the characteristics of the product modelling approach and the characteristics of architectural design, it is concluded in this research project that product modelling does not suffice for support of architectural design. Architectural design is characterised mainly as a problem solving process, involving illdefined problems that require a very dynamic way of dealing with information that concerns both the problem and emerging solutions. Furthermore, architectural design is in many ways an evolutionary process. In short term this is because of the incremental approach to problem solving in design projects; and in long term because of the stylistic development of designers and the continuous developments in the building and construction industry in general. The requirements that are posed by architectural design are concentrated in the keywords extensibility and flexibility of the design informationmodels. Extensibility means that designers can extend conceptual models with definitions that best suit the design concepts they wish to utilise. Flexibility means that information in design models can be structured in a way that accurately represents the design rationale. This includes the modelling of incidental characteristics and relationships of the entities in the model that are not necessarily predefined in a conceptual model. In general, product modelling does not adequately support this dynamic nature of design. Therefore, this research project has studied the concepts developed in the technology of Feature-based modelling, which originates from the area of mechanical engineering. These concepts include the usage of Features as the primitives for defining and reasoning about a product. Features have an autonomous function in the information model, which, as a result, constitutes a flexible network of relationships between Features that are established during the design process. The definition of Features can be specified by designers to formalise new design concepts. This allows the design tools to be adapted to the specific needs of the individual designer, enlarging the library of available resources for design. In addition to these key-concepts in Feature-based modelling as it is developed in the mechanical engineering context, the project has determined the following principles for a Feature-based approach in the architectural context. Features in mechanical engineering are used mainly to describe the lowest level of detail in a product's design, namely the characteristics of its parts. In architecture the design process does not normally follow a strictly hierarchical approach and therefore requires that the building be modelled as a whole. This implies that multiple levels of abstraction are modelled and that Features are used to describe information at the various abstraction levels. Furthermore, architectural design involves concepts that are non-physical as well as physical; Features are to be used for modelling both kinds. The term Feature is defined in this research project to reflect the above key-concepts for this modelling approach. A Feature is an autonomous, coherent collection of information, with semantic meaning to a designer and possibly emerging during design, that is defined to formalise a design concept at any level of abstraction, either physical or non-physical, as part of a building model. Feature models are built up entirely of Features and are structured in the form of a directed graph. The nodes in the graph are the Features, whereas the arcs are the relationships between the Features. Features can be of user-defined types and incidental relationships can be added that are not defined at the typological level. An inventory in this project of what kind of information is involved in the practice of modelling architectural design is based on the analysis of a selection of sources of architectural design information. This inventory is deepened by a case study and results in the proposition of a categorisation of architectural Feature types.
keywords Automated Management Information Systems; Computer Aided Architectural Design; Information Systems; Modelling
series thesis:PhD
email j.p.v.leeuwen@bwk.tue.nl
more http://www.ds.arch.tue.nl/jos/thesis/
last changed 2003/02/12 21:37

_id avocaad_2001_09
id avocaad_2001_09
authors Yu-Tung Liu, Yung-Ching Yeh, Sheng-Cheng Shih
year 2001
title Digital Architecture in CAD studio and Internet-based competition
source AVOCAAD - ADDED VALUE OF COMPUTER AIDED ARCHITECTURAL DESIGN, Nys Koenraad, Provoost Tom, Verbeke Johan, Verleye Johan (Eds.), (2001) Hogeschool voor Wetenschap en Kunst - Departement Architectuur Sint-Lucas, Campus Brussel, ISBN 80-76101-05-1
summary Architectural design has been changing because of the vast and creative use of computer in different ways. From the viewpoint of designing itself, computer has been used as drawing tools in the latter phase of design (Mitchell 1977; Coyne et al. 1990), presentation and simulation tools in the middle phase (Liu and Bai 2000), and even critical media which triggers creative thinking in the very early phase (Maher et al. 2000; Liu 1999; Won 1999). All the various roles that computer can play have been adopted in a number of professional design corporations and so-called computer-aided design (CAD) studio in schools worldwide (Kvan 1997, 2000; Cheng 1998). The processes and outcomes of design have been continuously developing to capture the movement of the computer age. However, from the viewpoint of social-cultural theories of architecture, the evolvement of design cannot be achieved solely by designers or design processes. Any new idea of design can be accepted socially, culturally and historically only under one condition: The design outcomes could be reviewed and appreciated by critics in the field at the time of its production (Csikszentmihalyi 1986, 1988; Schon and Wiggins 1992; Liu 2000). In other words, aspects of design production (by designers in different design processes) are as critical as those of design appreciation (by critics in different review processes) in the observation of the future trends of architecture.Nevertheless, in the field of architectural design with computer and Internet, that is, so-called computer-aided design computer-mediated design, or internet-based design, most existing studies pay more attentions to producing design in design processes as mentioned above. Relatively few studies focus on how critics act and how they interact with designers in the review processes. Therefore, this study intends to investigate some evolving phenomena of the interaction between design production and appreciation in the environment of computer and Internet.This paper takes a CAD studio and an Internet-based competition as examples. The CAD studio includes 7 master's students and 2 critics, all from the same countries. The Internet-based competition, held in year 2000, includes 206 designers from 43 counties and 26 critics from 11 countries. 3 students and the 2 critics in the CAD studio are the competition participating designers and critics respectively. The methodological steps are as follows: 1. A qualitative analysis: observation and interview of the 3 participants and 2 reviewers who join both the CAD studio and the competition. The 4 analytical criteria are the kinds of presenting media, the kinds of supportive media (such as verbal and gesture/facial data), stages of the review processes, and interaction between the designer and critics. The behavioral data are acquired by recording the design presentation and dialogue within 3 months. 2. A quantitative analysis: statistical analysis of the detailed reviewing data in the CAD studio and the competition. The four 4 analytical factors are the reviewing time, the number of reviewing of the same project, the comparison between different projects, and grades/comments. 3. Both the qualitative and quantitative data are cross analyzed and discussed, based on the theories of design thinking, design production/appreciation, and the appreciative system (Goodman 1978, 1984).The result of this study indicates that the interaction between design production and appreciation during the review processes could differ significantly. The review processes could be either linear or cyclic due to the influences from the kinds of media, the environmental discrepancies between studio and Internet, as well as cognitive thinking/memory capacity. The design production and appreciation seem to be more linear in CAD studio whereas more cyclic in the Internet environment. This distinction coincides with the complementary observations of designing as a linear process (Jones 1970; Simon 1981) or a cyclic movement (Schon and Wiggins 1992). Some phenomena during the two processes are also illustrated in detail in this paper.This study is merely a starting point of the research in design production and appreciation in the computer and network age. The future direction of investigation is to establish a theoretical model for the interaction between design production and appreciation based on current findings. The model is expected to conduct using revised protocol analysis and interviews. The other future research is to explore how design computing creativity emerge from the process of producing and appreciating.
series AVOCAAD
email aleppo@cc.nctu.edu.tw
last changed 2005/09/09 08:48

_id bacd
authors Abadí Abbo, Isaac
year 1999
title APPLICATION OF SPATIAL DESIGN ABILITY IN A POSTGRADUATE COURSE
source Full-scale Modeling and the Simulation of Light [Proceedings of the 7th European Full-scale Modeling Association Conference / ISBN 3-85437-167-5] Florence (Italy) 18-20 February 1999, pp. 75-82
summary Spatial Design Ability (SDA) has been defined by the author (1983) as the capacity to anticipate the effects (psychological impressions) that architectural spaces or its components produce in observers or users. This concept, which requires the evaluation of spaces by the people that uses it, was proposed as a guideline to a Masters Degree Course in Architectural Design at the Universidad Autonoma de Aguascalientes in Mexico. The theory and the exercises required for the experience needed a model that could simulate spaces in terms of all the variables involved. Full-scale modeling as has been tested in previous research, offered the most effective mean to experiment with space. A simple, primitive model was designed and built: an articulated ceiling that allows variation in height and shape, and a series of wooden panels for the walls and structure. Several exercises were carried out, mainly to experience cause -effect relationships between space and the psychological impressions they produce. Students researched into spatial taxonomy, intentional sequences of space and spatial character. Results showed that students achieved the expected anticipation of space and that full-scale modeling, even with a simple model, proved to be an effective tool for this purpose. The low cost of the model and the short time it took to be built, opens an important possibility for Institutions involved in architectural studies, both as a research and as a learning tool.
keywords Spatial Design Ability, Architectural Space, User Evaluation, Learning, Model Simulation, Real Environments
series other
type normal paper
email iabadi@ceea.arq.ucv.ve
more http://info.tuwien.ac.at/efa
last changed 2004/05/04 09:27

_id e336
authors Achten, H., Roelen, W., Boekholt, J.-Th., Turksma, A. and Jessurun, J.
year 1999
title Virtual Reality in the Design Studio: The Eindhoven Perspective
source Architectural Computing from Turing to 2000 [eCAADe Conference Proceedings / ISBN 0-9523687-5-7] Liverpool (UK) 15-17 September 1999, pp. 169-177
summary Since 1991 Virtual Reality has been used in student projects in the Building Information Technology group. It started as an experimental tool to assess the impact of VR technology in design, using the environment of the associated Calibre Institute. The technology was further developed in Calibre to become an important presentation tool for assessing design variants and final design solutions. However, it was only sporadically used in student projects. A major shift occurred in 1997 with a number of student projects in which various computer technologies including VR were used in the whole of the design process. In 1998, the new Design Systems group started a design studio with the explicit aim to integrate VR in the whole design process. The teaching effort was combined with the research program that investigates VR as a design support environment. This has lead to increasing number of innovative student projects. The paper describes the context and history of VR in Eindhoven and presents the current set-UP of the studio. It discusses the impact of the technology on the design process and outlines pedagogical issues in the studio work.
keywords Virtual Reality, Design Studio, Student Projects
series eCAADe
email h.h.achten@bwk.tue.nl
last changed 2003/11/21 14:15

_id e719
authors Achten, Henri and Turksma, Arthur
year 1999
title Virtual Reality in Early Design: the Design Studio Experiences
source AVOCAAD Second International Conference [AVOCAAD Conference Proceedings / ISBN 90-76101-02-07] Brussels (Belgium) 8-10 April 1999, pp. 327-335
summary The Design Systems group of the Eindhoven University of Technology started a new kind of design studio teaching. With the use of high-end equipment, students use Virtual Reality from the very start of the design process. Virtual Reality technology up to now was primarily used for giving presentations. We use the same technology in the design process itself by means of reducing the time span in which one gets results in Virtual Reality. The method is based on a very brief cycle of modelling in AutoCAD, assigning materials in 3DStudio Viz, and then making a walkthrough in Virtual Reality in a standard landscape. Due to this cycle, which takes about 15 seconds, the student gets immediate feedback on design decisions which facilitates evaluation of the design in three dimensions much faster than usual. Usually the learning curve of this kind of software is quite steep, but with the use of templates the number of required steps to achieve results is reduced significantly. In this way, the potential of Virtual Reality is not only explored in research projects, but also in education. This paper discusses the general set-up of the design studio and shows how, via short workshops, students acquire knowledge of the cycle in a short time. The paper focuses on the added value of using Virtual Reality technology in this manner: improved spatial reasoning, translation from two-dimensional to three-dimensional representations, and VR feedback on design decisions. It discusses the needs for new design representations in this design environment, and shows how fast feedback in Virtual Reality can improve the spatial design at an early stage of the design process.
series AVOCAAD
email H.H.Achten@tue.nl, A.A.E.Turksma@tue.nl
last changed 2005/09/09 08:48

_id 6d88
authors Achten, Henri H. and Van Leeuwen, Jos P.
year 1999
title Feature-Based High Level Design Tools - A Classification
source Proceedings of the Eighth International Conference on Computer Aided Architectural Design Futures [ISBN 0-7923-8536-5] Atlanta, 7-8 June 1999, pp. 275-290
summary The VR-DIS project aims to provide design support in the early design stage using a Virtual Reality environment. The initial brief of the design system is based on an analysis of a design case. The paper describes the process of analysis and extraction of design knowledge and design concepts in terms of Features. It is demonstrated how the analysis has lead to a classification of design concepts. This classification forms one of the main specifications for the VR-based design aid system that is being developed in the VR-DIS programme. The paper concludes by discussing the particular approach used in the case analysis and discusses future work in the VR-DIS research programme.
keywords Features, Feature-Based modelling, Architectural Design, Design Process, Design Support
series CAAD Futures
email h.h.achten@bwk.tue.n
last changed 2006/11/07 06:22

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 30HOMELOGIN (you are user _anon_682440 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002