CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers

Hits 1 to 20 of 564

_id acadia04_088
id acadia04_088
authors Bechthold, Martin
year 2004
title Digital Design and Fabrication of Surface Structures
source Fabrication: Examining the Digital Practice of Architecture [Proceedings of the 23rd Annual Conference of the Association for Computer Aidd Design in Architecture and the 2004 Conference of the AIA Technology in Architectural Practice Knowledge Community / ISBN 0-9696665-2-7] Cambridge (Ontario) 8-14 November, 2004, 88-99
summary This paper presents a study in digital design and manufacturing of shells, which are material-efficient systems that generate their load-bearing capacity through curvature. Their complex shapes are chal­lenging to build, and the few current shell projects employ the same shape repetitively in order to reduce the cost of concrete formwork. Can digital design and manufacturing technology make these systems suitable for the needs of the 21st century? The research developed new digitally-driven fabrication processes for Wood-Foam Sandwich Shells and Ferrocement-Concrete Sandwich Shells. These are partially pre-fabricated in order to allow for the application of Computer-Numerically Controlled (CNC) technology. Sandwich systems offer advantages for the digitally-enabled construction of shells, while at the same time improving their structural and thermal performance. The research defines design and manufacturing processes that reduce the need for repetition in order to save costs. Wood-Foam Sandwich shells are made by laminating wood-strips over a CNC-milled foam mold that eventually becomes the structural sandwich core. For Ferrocement-Concrete sandwich shells, a two-stage process is presented: pre-fabricated ferrocement panels become the permanent formwork for a cast-in-place concrete shell. The design and engineering process is facilitated through the use of parametric solid modeling envi­ronments. Modeling macros and integrated Finite-Element Analysis tools streamline the design process. Accuracy in fabrication is maintained by using CNC techniques for the majority of the shaping processes. The digital design and manufacturing parameters for each process are verified through design and fabrication studies that include prototypes, mockups and physical scale models.
keywords Shell, Pre-Fabrication, Prototype, Custom-Manufacturing, Simulation
series ACADIA
last changed 2010/05/16 07:09

_id acadia11_138
id acadia11_138
authors Buell, Samantha; Shaban, Ryan; Corte, Daniel; Beorkrem, Christopher
year 2011
title Zero-waste, Flat Pack Truss Work: An Investigation of Responsive Structuralism
source ACADIA 11: Integration through Computation [Proceedings of the 31st Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA)] [ISBN 978-1-6136-4595-6] Banff (Alberta) 13-16 October, 2011, pp. 138-143
summary The direct and rapid connections between scripting, modeling and prototyping allow for investigations of computation in fabrication. The manipulation of planar materials with two-dimensional CNC cuts can easily create complex and varied forms, volumes, and surfaces. However, the bulk of research on folding using CNC fabrication tools is focused upon surfaces, self-supporting walls and shell structures, which do not integrate well into more conventional building construction models.This paper attempts to explain the potential for using folding methodologies to develop structural members through a design-build process. Conventional building practice consists of the assembly of off-the-shelf parts. Many times, the plinth, skeleton, and skin are independently designed and fabricated, integrating multiple industries. Using this method of construction as an operative status quo, this investigation focused on a single structural component: the truss. A truss is defined as: “A triangulated arrangement of structural members that reduces nonaxial external forces to a set of axial forces in its members.” (Allen and Iano 2004)Using folding methodologies and sheet steel to create a truss, this design investigation employed a recyclable and prolific building material to redefine the fabrication of a conventional structural member. The potential for using digital design and two-dimensional CNC fabrication tools in the design of a foldable truss from sheet steel is viable in the creation of a flat-packed, minimal waste structural member that can adapt to a variety of aesthetic and structural conditions. Applying new methods to a component of the conventional ‘kit of parts’ allowed for a novel investigation that recombines zero waste goals, flat-packing potential, structural expression and computational processes.
series ACADIA
type normal paper
last changed 2011/10/06 04:05

_id 2004_228
id 2004_228
authors Özener, Ozan Önder, Akleman, Ergun and Srinivasan, Vinod
year 2004
title Interactive Rind Modeling for Architectural Design
source Architecture in the Network Society [22nd eCAADe Conference Proceedings / ISBN 0-9541183-2-4] Copenhagen (Denmark) 15-18 September 2004, pp. 228-237
summary The paper presents a new modeling technique for architectural design. Rind modeling provides for the easy creation of surfaces resembling peeled and punctured rinds. We show how the method‘s two main steps of 1) creation of a shell or crust 2) opening holes in the crust by punching or peeling can be encapsulated into a real time semi-automatic interactive algorithm. We include a number of worked examples, some by students in a special modeling workshop that demonstrate the ease with which a large variety of intricate rind shapes can be created. Rind modeling method allows us developing a user-friendly tool for designers and architects. The new tool extends the abilities of polygonal modeling and allows designers to work on structured and consistent models for architectural design purposes. Rind modeling gives architects and designers a processing flexibility. It can be used in conceptual modeling during the early design phase. It can also be efficiently used for creating variety of shell structures for architectural design.
keywords CAAD, Digital Design, 3D Modeling, Subdivision Surfaces
series eCAADe
last changed 2004/09/18 06:45

_id ddss2004_ra-279
id ddss2004_ra-279
authors Bax, M.F.Th. and H.M.G.J. Trum
year 2004
title On the Notion of Level in Architecture
source Van Leeuwen, J.P. and H.J.P. Timmermans (eds.) Recent Advances in Design & Decision Support Systems in Architecture and Urban Planning, Dordrecht: Kluwer Academic Publishers, ISBN: 1-4020-2408-8, p. 279-292
summary The notion of Level (in a scale of Levels) is probably the most authentic notion in Architecture. Already in the work of Vitruvius the notion is implicitly present in the triad ‘ordinatio – symmetria – eurythmia’. In more recent times, the notion always appears in relation with hierarchical organization as a means of control of quality. However used in drawings and in architectural discourse, the term lacks precision; there are many types of level like abstraction, specification, dependency, resolution levels etc., but no operational definition can be found as a notion that structures architectural objects and design processes simultaneously in a consistent way. Defining this notion of Level is the purpose of this paper. An example of application in an architectural decision-making process completes the paper.
keywords Levels, Hierarchy, Architecture, Composition, Complexity, Control
series DDSS
last changed 2004/07/03 20:13

_id 2004_248
id 2004_248
authors Chang, Teng-Wen and Woodbury, Robert F.
year 2004
source Architecture in the Network Society [22nd eCAADe Conference Proceedings / ISBN 0-9541183-2-4] Copenhagen (Denmark) 15-18 September 2004, pp. 248-254
summary The Australian branch of the SEED project created a new formalism for design spaces in which the fundamental structuring operator is information specificity, formally characterised as subsumption. Here design space navigation is composed as combinations of the primitive operators of resolution, unification, anti-unification, search, query and hysterical undo. The structures needed to support such a view are highly constrained in a mathematical sense and it is in these constraints that the problems for representation of geometry arise. The research challenge is to add the formal design space exploration constraints into an existing geometric representation scheme or alternatively to discover a new scheme in which the constraints are realized. Based on Typed Feature Structures (TFS), Geometric Typed Feature Structures (GTFS) are a representation scheme and method for performing the basic design space exploration operations on geometric objects. The crucial insight behind extending TFS to geometry is to discover useful algebraic structures of geometric objects affording the mathematics required of TFS. In this paper we describe Geometric Typed Feature Structures through one example of form: IOPSet. Our method of exposition is both mathematical and graphical: for each structure we will demonstrate both how it meets the necessary formal conditions as well as the sorts of form-sculpting operations it enables. An architectural example: insulated enclosure is used as a demonstration of subsumption operations over IOPSet. One alternative description of insulated enclosure using GTFS is also shown in the paper.
keywords Geometric Typed Feature Structures, SEED, Design Space Explorer, Geometric Design Information
series eCAADe
type normal paper
last changed 2005/10/27 11:57

_id ijac20032206
id ijac20032206
authors Cory Clarke; Phillip Anzalone
year 2004
title Trusset: Parallel Development of Software and Construction Systems for Space-Truss Structures
source International Journal of Architectural Computing vol. 2 - no. 2
summary This paper documents our current progress on theparallel development of a building system andcorresponding agent-based software design tools;together the two produce a seamless pipeline fromdesign to fabrication and assembly. The building systemis a clad differential space-truss designed forfabrication entirely with computer numericallycontrolled (CNC) linear cutting devices such as CNClaser cutters or two-axis mills. The softwarecomponent is a set of agent-based design tools fordeveloping surfaces and envelopes formally suitable tobe built using our space-truss system.
series journal
last changed 2007/03/04 06:08

_id 2004_286
id 2004_286
authors Datta, Sambit
year 2004
title A Representational Construct for Sharing Knowledge in Design Exploration
source Architecture in the Network Society [22nd eCAADe Conference Proceedings / ISBN 0-9541183-2-4] Copenhagen (Denmark) 15-18 September 2004, pp. 286-291
summary Exploration with formal design systems comprise iterative processes for specifying problems, finding plausible and alternative solutions, judging the validity of solutions relative to problems and reformulating problems and solutions. These processes are knowledge intensive, collaborative and multidisciplinary in nature. Recent research efforts propose representational frameworks that allow for modeling of knowledge capture, knowledge sharing and knowledge reuse during designing. However, design remains a human enterprise: to be scalable and usable in design practice, formal symbolic representations need to be embedded within a broader framework of agent (human and computational) interaction. This paper argues that, for sharing and reusing knowledge between agents in design exploration, it is necessary to build an intermediary representational structure that bridges specialist interactions with exploration knowledge (the domain) and the symbol structures that represent them (the symbol substrate). The paper identifies the requirements of such an intermediary representation for the sharing of knowledge between design agents. These requirements are addressed through the development of a shared interaction construct, the feature node.
keywords Exploration, Design Knowledge, Interaction Model, Mixed-Initiative
series eCAADe
last changed 2004/09/18 06:45

_id 2005_771
id 2005_771
authors Gavrilou, Evelyn, Bourdakis, Vassilis and Charitos, Dimitris
year 2005
title Documenting the Spatial Design of an Interactive Multisensory Urban Installation
source Digital Design: The Quest for New Paradigms [23nd eCAADe Conference Proceedings / ISBN 0-9541183-3-2] Lisbon (Portugal) 21-24 September 2005, pp. 771-778
summary The paper documents the design and implementation of an interactive multi-sensory environment (DETOUR) created by the interdisciplinary group VE_Design for an international open-air exhibition in Athens, Greece during the summer of 2004. The paper describes the creative process followed throughout the project and registers how computers, sensors and effectors have been utilised to either facilitate the creation of electronically mediated experiences or support the design. The architectural concept of the multi-sensory installation is analyzed in relation to its potential for creating communicative experiences as well as addressing physical form simulations. Notions such as ephemeral structures, parasites, social space, game as art and communication are discussed. The body – space interaction is investigated, enabling the team to elaborate on a modular construction. Finally, the impact of the work is discussed on the basis of recorded observations by visitors.
keywords Interactive Multi-Sensory Environment; Ephemeral Space; Public Art;Embodied Spatial Experience; Simulation of Physical Form.
series eCAADe
last changed 2012/11/23 18:17

_id sigradi2006_e028c
id sigradi2006_e028c
authors Griffith, Kenfield; Sass, Larry and Michaud, Dennis
year 2006
title A strategy for complex-curved building design:Design structure with Bi-lateral contouring as integrally connected ribs
source SIGraDi 2006 - [Proceedings of the 10th Iberoamerican Congress of Digital Graphics] Santiago de Chile - Chile 21-23 November 2006, pp. 465-469
summary Shapes in designs created by architects such as Gehry Partners (Shelden, 2002), Foster and Partners, and Kohn Peterson and Fox rely on computational processes for rationalizing complex geometry for building construction. Rationalization is the reduction of a complete geometric shape into discrete components. Unfortunately, for many architects the rationalization is limited reducing solid models to surfaces or data on spread sheets for contractors to follow. Rationalized models produced by the firms listed above do not offer strategies for construction or digital fabrication. For the physical production of CAD description an alternative to the rationalized description is needed. This paper examines the coupling of digital rationalization and digital fabrication with physical mockups (Rich, 1989). Our aim is to explore complex relationships found in early and mid stage design phases when digital fabrication is used to produce design outcomes. Results of our investigation will aid architects and engineers in addressing the complications found in the translation of design models embedded with precision to constructible geometries. We present an algorithmically based approach to design rationalization that supports physical production as well as surface production of desktop models. Our approach is an alternative to conventional rapid prototyping that builds objects by assembly of laterally sliced contours from a solid model. We explored an improved product description for rapid manufacture as bilateral contouring for structure and panelling for strength (Kolarevic, 2003). Infrastructure typically found within aerospace, automotive, and shipbuilding industries, bilateral contouring is an organized matrix of horizontal and vertical interlocking ribs evenly distributed along a surface. These structures are monocoque and semi-monocoque assemblies composed of structural ribs and skinning attached by rivets and adhesives. Alternative, bi-lateral contouring discussed is an interlocking matrix of plywood strips having integral joinery for assembly. Unlike traditional methods of building representations through malleable materials for creating tangible objects (Friedman, 2002), this approach constructs with the implication for building life-size solutions. Three algorithms are presented as examples of rationalized design production with physical results. The first algorithm [Figure 1] deconstructs an initial 2D curved form into ribbed slices to be assembled through integral connections constructed as part of the rib solution. The second algorithm [Figure 2] deconstructs curved forms of greater complexity. The algorithm walks along the surface extracting surface information along horizontal and vertical axes saving surface information resulting in a ribbed structure of slight double curvature. The final algorithm [Figure 3] is expressed as plug-in software for Rhino that deconstructs a design to components for assembly as rib structures. The plug-in also translates geometries to a flatten position for 2D fabrication. The software demonstrates the full scope of the research exploration. Studies published by Dodgson argued that innovation technology (IvT) (Dodgson, Gann, Salter, 2004) helped in solving projects like the Guggenheim in Bilbao, the leaning Tower of Pisa in Italy, and the Millennium Bridge in London. Similarly, the method discussed in this paper will aid in solving physical production problems with complex building forms. References Bentley, P.J. (Ed.). Evolutionary Design by Computers. Morgan Kaufman Publishers Inc. San Francisco, CA, 1-73 Celani, G, (2004) “From simple to complex: using AutoCAD to build generative design systems” in: L. Caldas and J. Duarte (org.) Implementations issues in generative design systems. First Intl. Conference on Design Computing and Cognition, July 2004 Dodgson M, Gann D.M., Salter A, (2004), “Impact of Innovation Technology on Engineering Problem Solving: Lessons from High Profile Public Projects,” Industrial Dynamics, Innovation and Development, 2004 Dristas, (2004) “Design Operators.” Thesis. Massachusetts Institute of Technology, Cambridge, MA, 2004 Friedman, M, (2002), Gehry Talks: Architecture + Practice, Universe Publishing, New York, NY, 2002 Kolarevic, B, (2003), Architecture in the Digital Age: Design and Manufacturing, Spon Press, London, UK, 2003 Opas J, Bochnick H, Tuomi J, (1994), “Manufacturability Analysis as a Part of CAD/CAM Integration”, Intelligent Systems in Design and Manufacturing, 261-292 Rudolph S, Alber R, (2002), “An Evolutionary Approach to the Inverse Problem in Rule-Based Design Representations”, Artificial Intelligence in Design ’02, 329-350 Rich M, (1989), Digital Mockup, American Institute of Aeronautics and Astronautics, Reston, VA, 1989 Schön, D., The Reflective Practitioner: How Professional Think in Action. Basic Books. 1983 Shelden, D, (2003), “Digital Surface Representation and the Constructability of Gehry’s Architecture.” Diss. Massachusetts Institute of Technology, Cambridge, MA, 2003 Smithers T, Conkie A, Doheny J, Logan B, Millington K, (1989), “Design as Intelligent Behaviour: An AI in Design Thesis Programme”, Artificial Intelligence in Design, 293-334 Smithers T, (2002), “Synthesis in Designing”, Artificial Intelligence in Design ’02, 3-24 Stiny, G, (1977), “Ice-ray: a note on the generation of Chinese lattice designs” Environmental and Planning B, volume 4, pp. 89-98
keywords Digital fabrication; bilateral contouring; integral connection; complex-curve
series SIGRADI
last changed 2016/03/10 08:52

_id acadia04_076
id acadia04_076
authors Hanna, Sean
year 2004
title Modularity and Flexibility at the Small Scale: Evolving Continuous Material Variation with Stereolithography
source Fabrication: Examining the Digital Practice of Architecture [Proceedings of the 23rd Annual Conference of the Association for Computer Aided Design in Architecture and the 2004 Conference of the AIA Technology in Architectural Practice Knowledge Community / ISBN 0-9696665-2-7] Cambridge (Ontario) 8-14 November, 2004, 76-87
summary In this paper, we introduce a technique by which the internal material properties of an object can be optimised at a microstructural level (5x10-5m) to counteract the forces that are applied to it. These can then be fabricated using the rapid prototyping method of stere­olithography. The proposed technique is analogous to principles of mass customization and takes advantage of a flexible module to cre­ate complex structures in a manner that is computationally efficient and effective. The process is two-staged, in which a genetic algorithm evolves the topology of the microstructure and a second algorithm incorporating Finite Element Analysis then optimises the geometry. The examples shown are designed specifically for the fabrication tech­nique, but the method and general principles are applicable to struc­tural problems at any scale.
keywords genetic algorithm, rapid prototyping, stereolithography, materials
series ACADIA
last changed 2010/05/16 07:09

_id 41f0
id 41f0
authors Janusz Rebielak
year 2004
source Proceedings of the Fourth International Conference of Mathematics & Design, Special Edition of the Journal of Mathematics & Design, Volume 4, No.1, pp. 239-249.
summary The paper presents basic description of shaping processes of tension-strut structures developed by the author and proposed as lightweight structural systems for large span dome covers. In the paper are presented two basic types of the systems, which are built mainly by means of tetrahedral and octahedral modules with the V-shaped bar sets. For all the offered types of structures there are prepared suitable numerical models defined in the programming language Formian. Application of these numerical models considerably accelerates design process of these complex forms of spatial structures and makes possible an easier co-operation between all designers involved in this process.
series other
type normal paper
last changed 2005/04/08 15:17

_id eaea2003_14-kardos
id eaea2003_14-kardos
authors Kardos, P.
year 2004
title Interactive “Sketching” of the Urban-Architectural Spatial Draft
source Spatial Simulation and Evaluation - New Tools in Architectural and Urban Design [Proceedings of the 6th European Architectural Endoscopy Association Conference / ISBN 80-227-2088-7], pp. 65-70
summary The recent innovative information technologies and the new possibilities of multimedia exploitation in the realm of architectural design and education support the development of image communication methods on the basis of interactivity. The presented method of perceptual iconic simulation is based on the principle of an analogue-digital model cinemascope simulation of the urban space in laboratory conditions in real time and real model environment in a natural horizon. In architectural teaching and in urban spatial structures design it enables a continual semantic evaluation of the graphic output and its further multimedia processing.
series EAEA
last changed 2005/09/09 08:43

_id acadia03_040
id acadia03_040
authors Katherine A. Liapi, Katherine A. and Kim, Jinman
year 2003
title A Parametric Approach to the Design of a Tensegrity Vaulted Dome for an Ephemeral Structure for the 2004 Olympics
source Connecting >> Crossroads of Digital Discourse [Proceedings of the 2003 Annual Conference of the Association for Computer Aided Design In Architecture / ISBN 1-880250-12-8] Indianapolis (Indiana) 24-27 October 2003, pp. 301-309
summary Tensegrity, defined as “tensional integrity,” is central to the design of a semi-open exhibition space that was submitted as an entry to the international competition for the design of “Ephemeral Structures for the City of Athens,” in the context of the 2004 Olympic Games. The main feature of the proposed exhibition space is a vaulted dome composed of interconnected detachable and deployable tensegrity units. The most challenging aspect in the design of the tensegrity vault was the generation of alternative spatial configurations for form exploration and study. For this purpose a mathematical code has been developed that links all the parameters that affect the design of tensegrity vaults. The code also allows for the parametric graphical generation of the vault by displaying geometric information in a 3D environment. This paper discusses the geometric basis of the code and its usefulness in the morphological study of the tensegrity vaulted dome for the proposed ephemeral structure. The mathematical code has been shown to significantly facilitate the study of various preliminary configurations of tensegrity vaulted structures.
series ACADIA
last changed 2003/10/30 15:20

_id ijac20032207
id ijac20032207
authors Liapi, Katherine A.; Kim, Jinman
year 2004
title A Parametric Approach to the Design of Vaulted Tensegrity Networks
source International Journal of Architectural Computing vol. 2 - no. 2
summary Significant new research in tensegrity theory and technology encourages tensegrity’s implementation in architecture. A recently developed technology makes possible the rapid modular assembly of deployable tensegrity units, and the construction of alternate curved configurations by re-using the same modules. Although a form exploration method for tensegrity structures already exists, estimating the structure’s new geometry remains a challenge due to difficulties designers encounter in understanding and following the method’s geometric construction process. Besides, the method doesn’t address the geometry of vaulted configurations. This paper presents algorithms that link together the geometric parameters that determine the shape of tensegrity vaults by addressing different design-construction scenarios, and a software code that generates parametric models of tensegrity vaulted structures.The application of the algorithms to the morphological study of a tensegrity vaulted dome, which constituted the main feature of an entry to arecent international architectural competition, is also presented.
series other
type normal paper
last changed 2010/05/16 07:13

_id acadia04_100
id acadia04_100
authors Liapi, Katherine
year 2004
title A computer Based System for the Design and Fabrication of Tensegrity Structures
source Fabrication: Examining the Digital Practice of Architecture [Proceedings of the 23rd Annual Conference of the Association for Computer Aided Design in Architecture and the 2004 Conference of the AIA Technology in Architectural Practice Knowledge Community / ISBN 0-9696665-2-7] Cambridge (Ontario) 8-14 November, 2004, 100-109
summary Tensegrity structures are composed of tension compression com­ponents, where the compression components (bars) are discontinu­ously enclosed within continuous tensile components (cables). From an engineering point of view, a tensegrity structure is characterized by geometric non-linearity and large displacements under loading. Therefore, its prestressed shape and deformation under loading are the result of the combined effect of the geometric parameters that determine the initial configuration of the structure, the level of pre­stress applied to cables, and the material properties of the compo­nent members of the structure. A method for generating the initial geometric configuration of tensegrity structures composed of tenseg­rity units and a parametric expression of this geometry have already been developed. A novel technology that makes possible the construction of tensegrity structures from the on-site assembly of deployable tensegrity units, which are fur­nished with a simple mechanism that permits bar-elongation, and, as a result, an increase of the prestress applied to the cables of each unit, is also under development. Also under development is a static analysis method that takes into account the above method for prestressing cables. This paper discusses the features of a system that supports the combined geometric and structural design of tensegrity structures, and integrates a graphical interface to display: a) models of initial geometry, b) geometry of the structure after prestress and loading are applied, and c) magnitude of forces applied to the structure’s component members (bars and cables). The system also provides numerical data to be used in component fabrication, and is therefore expected to become a very valuable tool for the design and construction of tensegrity structures.
series ACADIA
last changed 2010/05/16 07:09

_id 11cb
id 11cb
authors Oguzhan Özcan
year 2004
source Proceedings of the Fourth International Conference of Mathematics & Design, Special Edition of the Journal of Mathematics & Design, Volume 4, No.1, pp. 199-203.
summary Many people believe that mathematical thought is an essential element of creativity. The origin of this idea in art dates back to Plato. Asserting that aesthetics is based on logical and mathematical rules, Plato had noticed that geometrical forms were “forms of beauty” in his late years. Unlike his contemporaries, he had stressed that the use of geometrical forms such as lines, circles, planes, cubes in a composition would aid to form an aesthetics. The rational forms of Plato and the rules of geometry have formed the basis of antique Greek art, sculpture and architecture and have influenced art and design throughout history in varying degrees. This emphasis on geometry has continued in modern design, reflected prominently by Kandinsky’s geometric classifications .

Mathematics and especially geometry have found increasing application in the computer-based design environment of our day. The computer has become the central tool in the modern design environment, replacing the brush, the paints, the pens and pencils of the artist. However, if the artist does not master the internal working of this new tool thoroughly, he can neither develop nor express his creativity. If the designer merely learns how to use a computer-based tool, he risks producing designs that appear to be created by a computer. From this perspective, many design schools have included computer courses, which teach not only the use of application programs but also programming to modify and create computer-based tools.

In the current academic educational structure, different techniques are used to show the interrelationship of design and programming to students. One of the best examples in this area is an application program that attempts to teach the programming logic to design students in a simple way. One of the earliest examples of such programs is the Topdown Programming Shell developed by Mitchell, Liggett and Tan in 1988 . The Topdown system is an educational CAD tool for architectural applications, where students program in Pascal to create architectural objects. Different examples of such educational programs have appeared since then. A recent fine example of these is the book and program called “Design by Number” by John Maeda . In that book, students are led to learn programming by coding in a simple programming language to create various graphical primitives.

However, visual programming is based largely on geometry and one cannot master the use of computer-based tools without a through understanding of the mathematical principles involved. Therefore, in a model for design education, computer-based application and creativity classes should be supported by "mathematics for design" courses. The definition of such a course and its application in the multimedia design program is the subject of this article.

series other
type normal paper
last changed 2005/04/07 13:36

_id acadia04_126
id acadia04_126
authors Olsson, Pierre
year 2004
source Fabrication: Examining the Digital Practice of Architecture [Proceedings of the 23rd Annual Conference of the Association for Computer Aided Design in Architecture and the 2004 Conference of the AIA Technology in Architectural Practice Knowledge Community / ISBN 0-9696665-2-7] Cambridge (Ontario) 8-14 November, 2004, 126-137
summary In the design process, knowledge of structural mechanics is often reduced to its being used to determine whether the object that has been designed is sufficiently strong. Strength testing indicates this directly on a yes or no basis, whereas computations are able to compare the level of stress with the strength of the material. Understanding the interplay between load, form, and material which structural mechanics is able to provide can be of considerable and far-reaching importance, both at an early conceptual design stage and while developing parts and details. The aim of this paper is to show how structural mechanics (in particular, static eigenvalue analysis) can be used to create work methods that provide a common language between the designer and the engineer during the design process. A case study is presented in which the Finite Element Method (FEM) was used to perform static eigenvalue analyses aimed at facilitating a collaborative furniture design process in the creation of a shell-shaped chair. Analysis of this sort was chosen because it can be used in a sketch-like manner. The designer found it easy to incorporate the results of the analysis into his own sketching work. It also enabled him to see how different design changes affected the overall structural behaviour of the chair without him having to create a full-scale prototype for physical testing.
keywords CAE, design aid, FEM, furniture, static eigenvalue analysis
series ACADIA
last changed 2010/05/16 07:09

_id acadia04_162
id acadia04_162
authors Perez, Santiago R.
year 2004
title The Synthetic Sublime
source Fabrication: Examining the Digital Practice of Architecture [Proceedings of the 23rd Annual Conference of the Association for Computer Aided Design in Architecture and the 2004 Conference of the AIA Technology in Architectural Practice Knowledge Community / ISBN 0-9696665-2-7] Cambridge (Ontario) 8-14 November, 2004, 162-175
summary The distinction between the artificial and the natural has been increasingly challenged as a result of advances in genetics, microbiol¬ogy, and robotics. Beginning with the molecular assemblage of organic systems into complex micro-surfaces and structures, and expanding into the realm of the macro landscape, our understanding of the term Synthetic must be revised. What is the relationship between the component (or part) and the whole, when confronted with the Synthetic? Digitally mediated fabrication technologies, combined with a renewed interest in topology and (bio)logical form, serve to challenge our preconceived notions of space and form. This inquiry will attempt to explore the relationship between traditional assemblies produced by hand, and the production of complex forms through digital rapid prototyping. The impact of D'Arcy Thompson's On Growth and Form will be considered both as a historical juncture and a contemporary source of knowledge for the exploration of new assemblages inspired by topology and biology. In particular, the organic micro-surfaces depicted in France Bourély's Hidden Beauty will be explored, in comparison with the mathematical development of organic forms inspired by Periodic Minimal Surfaces. The analysis of emerging forms and assemblages based on the notion of the Synthetic will be compared with the Organic, and considered within the context of twentieth century art and sculpture. An attempt will be made to establish new modes of inquiry for combining digital and physical explorations of space and form, influenced by advances in micro-scale structures, complex surfaces, and the history of organic form in art.
keywords landscape, form, surface, assemblage
series ACADIA
last changed 2010/05/16 07:09

_id sigradi2004_132
id sigradi2004_132
authors Renata La Rocca; Anja Pratschke
year 2004
title Estruturando o inestruturável: A metáfora do teatro da memória de giulio camilo na construção do espaço virtual [Structuring the Unstructural: The Metaphor of the Theater of the Memory from Giulio Camilo in the Construction of Virtual Space]
source SIGraDi 2004 - [Proceedings of the 8th Iberoamerican Congress of Digital Graphics] Porte Alegre - Brasil 10-12 november 2004
summary The subject of this article starts from studies that come being developed regarding the use of Mnemonic structures in relation to the conception of spaces, architectural projects, and its correlations with the images languages and the signs and its occurrences, applications and uses in spacial uses. Great part of the current examples of memorization structures applications in spacialities design are related to experimental virtual environments, mainly tied with the artistic production and/or the studies of design of user-computer interfaces. Our research suggests a new look at this subject, considering to investigate, beyond the virtual spacialities, applications in the concrete and hybrid spaces. In this article we propose to argue the subject from two metaphors related to the theater: the metaphor proposal for Brenda Laurel in Computer as a Theatre and the boarding of Giulio Camilo [ 1480-1544 ] in its Theater of the Memory.
keywords Mnemonic structures; conception of space; virtual environments; Computer as a Theatre; Theater of the Memory
series SIGRADI
last changed 2016/03/10 08:58

_id 041226_ribaudo-m
id 041226_ribaudo-m
authors Ribaudo,
year 2004
title Parametric Construction Stylesheets
source ETH postgraduate studies final thesis, Zurich
summary The present thesis is centred on the use of programmed tools as alternative or as support of the classical computer aided architectural design methods.This thesis shows among other things how were programmed/generated the mathematical descriptions of the frames, the joints and the production drawings using MEL (Maya Embedded Language).Further will be discussed pros and cons of the imported and exported digital data structures for their respective purpose like the generation of the joint details, the model visualizations, the different prototypes and the generation of the construction stylesheets.The result of this work will be shown by visualizations of digital models as well as by using rapid prototyping methods and CNC machines.Moreover this thesis will deal with the programming of stylesheets which were used to generate variants of constructions.The NDS2004 prototype represents such a variant and was produced with the above mentioned programmed tools.
series thesis:MSc
last changed 2005/09/09 10:58

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 28HOMELOGIN (you are user _anon_426244 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002