CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 485

_id cf2011_p108
id cf2011_p108
authors Iordanova, Ivanka; Forgues Daniel, Chiocchio François
year 2011
title Creation of an Evolutive Conceptual Know-how Framework for Integrative Building Design
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 435-450.
summary Low productivity of the building sector today is attributed to the fragmentation of tasks, disciplines and responsibilities, as well as to the resistance to adopt integrative work processes and digital means. The increased complexity of architectural projects and the aroused social consciousness for sustainable environment calls for integrative design collaboration. Thus, there is need for a Conceptual Framework combining work processes, technological means and policy aspects. According to the literature, integrative multidisciplinary design is a strategy resulting in high performance buildings nurturing sustainable way of living (Reed et al. 2009, Krygiel & Nies 2008). Responding to the increased technological complexity of our built environment, as well as to the objective of meeting multiple criteria of quality, both necessitating multidisciplinary collaboration during design, Building Information Modeling (BIM) is seen as a powerful means for fostering quality, augmenting productivity and decreasing loss in construction. Based on recent research, we can propose that a sustainable building can be designed through an integrative design process (IDP) which is best supported by BIM. However, our ongoing research program and consultations with advanced practitioners underscore a number of limitations. For example, a large portion of the interviewed professionals and construction stakeholders do not necessarily see a link between sustainable building, integrative design process and BIM, while in our opinion, their joint use augments the power of each of these approaches taken separately. Thus, there is an urgent necessity for the definition of an IDP-BIM framework, which could guide the building industry to sustainable results and better productivity. This paper defines such a framework, whose theoretical background lays on studies in social learning (activity theory and situated action theories). These theories suggest that learning and knowledge generation occurs mainly within a social process defined as an activity. This corresponds to the context in which the IDP-BIM framework will be used, its final objective being the transformation of building design practices. The proposed IDP-BIM framework is based on previous research and developments. Thus, firstly, IDP process was well formalized in the Roadmap for the Integrated Design Process‚ (Reed et al.) which is widely used as a guideline for collaborative integrative design by innovating practices in USA and Canada. Secondly, the National Building Information Modeling Standard (NBIMS) of the USA is putting an enormous effort in creating a BIM standard, Succar (2008) recently proposed a conceptual framework for BIM, but BIM ontology is still under development (Gursel et al 2009). Thirdly, an iterative design process bound to gating reviews (inspired from software development processes) was found to be successful in the context of multidisciplinary design studios (reported in our previous papers). The feedback from this study allowed for modifications and adjustments included in the present proposal. The gating process assures the good quality of the project and its compliance to the client's requirements. The challenge of this research is to map the above mentioned approaches, processes and technologies into the design process, thus creating an integrated framework supporting and nurturing sustainable design. The IDP-BIM framework can be represented by a multidimensional matrix linked to a semantic network knowledge database: - the axes of the matrix being the project timeline, the design process actors and building stakeholders (architect, engineers, client, contractor, environmental biologist, etc.), or different aspects of building performance (environmental, functional, social, interior environment quality, cost, etc.); and - the knowledge database providing multiple layers of semantic support in terms of process, domain knowledge, technology and workflow at a given moment of the project and for a given actor or building aspect. The IDP-BIM framework is created as an evolutive digital environment for know-how and will have an established protocol for regular updates. The paper will firstly present the state of the art in IDP and BIM. Secondly, it will expose the methodology used for the definition of the Framework, followed by a description of its structure, contents and digital implementation. Then, some scenarios for the use of the Framework will be shown as validation.
keywords integrated design process, BIM, multidisciplinary design, conceptual framework
series CAAD Futures
email ivanka.iordanova@videotron.ca
last changed 2012/02/11 18:21

_id cf2011_p109
id cf2011_p109
authors Abdelmohsen, Sherif; Lee Jinkook, Eastman Chuck
year 2011
title Automated Cost Analysis of Concept Design BIM Models
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 403-418.
summary AUTOMATED COST ANALYSIS OF CONCEPT DESIGN BIM MODELS Interoperability: BIM models and cost models This paper introduces the automated cost analysis developed for the General Services Administration (GSA) and the analysis results of a case study involving a concept design courthouse BIM model. The purpose of this study is to investigate interoperability issues related to integrating design and analysis tools; specifically BIM models and cost models. Previous efforts to generate cost estimates from BIM models have focused on developing two necessary but disjoint processes: 1) extracting accurate quantity take off data from BIM models, and 2) manipulating cost analysis results to provide informative feedback. Some recent efforts involve developing detailed definitions, enhanced IFC-based formats and in-house standards for assemblies that encompass building models (e.g. US Corps of Engineers). Some commercial applications enhance the level of detail associated to BIM objects with assembly descriptions to produce lightweight BIM models that can be used by different applications for various purposes (e.g. Autodesk for design review, Navisworks for scheduling, Innovaya for visual estimating, etc.). This study suggests the integration of design and analysis tools by means of managing all building data in one shared repository accessible to multiple domains in the AEC industry (Eastman, 1999; Eastman et al., 2008; authors, 2010). Our approach aims at providing an integrated platform that incorporates a quantity take off extraction method from IFC models, a cost analysis model, and a comprehensive cost reporting scheme, using the Solibri Model Checker (SMC) development environment. Approach As part of the effort to improve the performance of federal buildings, GSA evaluates concept design alternatives based on their compliance with specific requirements, including cost analysis. Two basic challenges emerge in the process of automating cost analysis for BIM models: 1) At this early concept design stage, only minimal information is available to produce a reliable analysis, such as space names and areas, and building gross area, 2) design alternatives share a lot of programmatic requirements such as location, functional spaces and other data. It is thus crucial to integrate other factors that contribute to substantial cost differences such as perimeter, and exterior wall and roof areas. These are extracted from BIM models using IFC data and input through XML into the Parametric Cost Engineering System (PACES, 2010) software to generate cost analysis reports. PACES uses this limited dataset at a conceptual stage and RSMeans (2010) data to infer cost assemblies at different levels of detail. Functionalities Cost model import module The cost model import module has three main functionalities: generating the input dataset necessary for the cost model, performing a semantic mapping between building type specific names and name aggregation structures in PACES known as functional space areas (FSAs), and managing cost data external to the BIM model, such as location and construction duration. The module computes building data such as footprint, gross area, perimeter, external wall and roof area and building space areas. This data is generated through SMC in the form of an XML file and imported into PACES. Reporting module The reporting module uses the cost report generated by PACES to develop a comprehensive report in the form of an excel spreadsheet. This report consists of a systems-elemental estimate that shows the main systems of the building in terms of UniFormat categories, escalation, markups, overhead and conditions, a UniFormat Level III report, and a cost breakdown that provides a summary of material, equipment, labor and total costs. Building parameters are integrated in the report to provide insight on the variations among design alternatives.
keywords building information modeling, interoperability, cost analysis, IFC
series CAAD Futures
email sherif.morad@gatech.edu
last changed 2012/02/11 18:21

_id ecaade2008_074
id ecaade2008_074
authors Pauwels, Pieter; Verstraeten, Ruben; Meeus, Wim; De Meyer, Ronald; Van Campenhout, Jan
year 2008
title Industry Foundation Classes: A Space-Based Model Scheme?
source Architecture in Computro [26th eCAADe Conference Proceedings / ISBN 978-0-9541183-7-2] Antwerpen (Belgium) 17-20 September 2008, pp. 117-124
summary This paper illustrates our findings concerning space based design methodologies and interoperability issues for today’s Building Information Modeling (BIM) environments. A method is elaborated which enables building designers to perform an automated energy use analysis, based on an Industry Foundation Classes (IFC) model derived from a commercial BIM environment, in this case Autodesk Revit 9.1. A prototype application was built, which evaluates the building model as well as vendor-neutral exchange mechanisms, in accordance with the Flemish Energy Performance Regulation (EPR) standard. Several issues regarding the need for space-based building models are identified and algorithms are developed to overcome possible shortcomings.
keywords IFC, BIM, Revit, EPBD
series eCAADe
email pieter.pauwels@ugent.be, ruben.verstraeten@ugent.be, wim.meeus@ugent.be, ronald.demeyer@ugent.be, jan.vancampenhout@ugent.be
last changed 2008/09/09 13:55

_id ecaade2008_083
id ecaade2008_083
authors Belcher, Daniel; Johnson, Brian R.
year 2008
title ARchitectureView
source Architecture in Computro [26th eCAADe Conference Proceedings / ISBN 978-0-9541183-7-2] Antwerpen (Belgium) 17-20 September 2008, pp. 561-568
summary We present a system for viewing architectural building models – specifically Building Information Modeling (BIM) models – in 3D using an Augmented Reality Tangible User Interface (TUI) and a Magic Lens interaction metaphor. ARchitectureView is meant to facilitate communication and collaboration around a shared model. We present the system overview and a number of use scenarios in which the interface would serve to improve communication across disciplines and varied technical backgrounds, while supporting a rich and coherent common understanding.
keywords Augmented Reality, Building Information Modeling, Magic Lens, Tangible User Interface
series eCAADe
email belchd@u.washington.edu, brj@u.washington.edu
last changed 2008/09/09 13:55

_id ecaade2008_030
id ecaade2008_030
authors Donath, Dirk; Lobos, Danny
year 2008
title Massing Study Support
source Architecture in Computro [26th eCAADe Conference Proceedings / ISBN 978-0-9541183-7-2] Antwerpen (Belgium) 17-20 September 2008, pp. 101-108
summary Since Hugh Ferris in 1922 started with a series of massing studies the visualization of zoning planning began to be a topic for architects. Setbacks, plot area ratio, maximum building height, and other important attributes must be handled by the architect to fulfill the law, the needs of the clients and his own inspiration. This paper presents the problem of envelope design for high-rise isolated housing buildings, as well as a new Decision Support Systems tool based on the platform of a BIM software, that allows to simulate several options for building envelope according to the parameters required by the city Zoning Planning. These options deliver reliable data and geometry, to be analyzed in real time for the architects, engineers, builders, government and the client in the early stages of the building’s design.
keywords Constraint Based Design, Parametric Programming, Urban Modeling, Optimization, Architectural Design
series eCAADe
email donath@archit.uni-weimar.de, danny.lobos@architektur.uni-weimar.de
last changed 2008/09/09 13:55

_id ecaade2008_077
id ecaade2008_077
authors Graf, Robert; Yan, Wei
year 2008
title Automatic Walkthrough Utilizing Building Information Modeling to Facilitate Architectural Visualization
source Architecture in Computro [26th eCAADe Conference Proceedings / ISBN 978-0-9541183-7-2] Antwerpen (Belgium) 17-20 September 2008, pp. 555-560
summary This paper presents a new system that supports automatic path planning for walkthrough in building models, using information retrieved from Building Information Modeling (BIM). It can automatically generate a path that explores all or part of the rooms in a building. During a real-time walkthrough, users will be able to follow the path while interactively controlling their viewing angles. That way, users can take guided tours while simultaneously looking around to examine the spaces. We expect the system to be useful in design review because BIM models of design can be easily brought into the system that allows reviewers to start walkthrough immediately and interactively. The significance of the work is that the system has potential applications for visualization of complex building design.
keywords Walkthrough, Building Information Modeling, Visualization
series eCAADe
email robert@robertgraf.net, wyan@archmail.tamu.edu
last changed 2008/09/09 13:55

_id caadria2008_6_session1b_053
id caadria2008_6_session1b_053
authors Gu, Ning;Singh Vishal, London Kerry, Ljiljana Brankovic, Taylor Claudelle
year 2008
title Adopting Building Information Modeling (BIM) as Collaboration Platform in the Design Industry
source CAADRIA 2008 [Proceedings of the 13th International Conference on Computer Aided Architectural Design Research in Asia] Chiang Mai (Thailand) 9-12 April 2008, pp. 53-60
summary This paper discusses the preliminary findings of an ongoing research project aimed at developing a technological, operational and strategic analysis of adopting BIM in AEC/FM (Architecture-Engineering-Construction/Facility Management) industry as a collaboration tool. Outcomes of the project will provide specifications and guidelines as well as establish industry standards for implementing BIM in practice. This research primarily focuses on BIM model servers as a collaboration platform, and hence the guidelines are aimed at enhancing collaboration capabilities. This paper reports on the findings from: (1) a critical review of latest BIM literature and commercial applications, and (2) workshops with focus groups on changing work-practice, role of technology, current perception and expectations of BIM. Layout for case studies being undertaken is presented. These findings provide a base to develop comprehensive software specifications and national guidelines for BIM with particular emphasis on BIM model servers as collaboration platforms.
keywords Building Information Modelling, Collaboration Platform
series CAADRIA
email Ning.Gu@newcastle.edu.au
last changed 2012/05/30 19:29

_id cdc2008_085
id cdc2008_085
authors Morad, Sherif
year 2008
title Building Information Modeling and Architectural Practice: On the Verge of a New Culture
source First International Conference on Critical Digital: What Matters(s)? - 18-19 April 2008, Harvard University Graduate School of Design, Cambridge (USA), pp. 85-90
summary The introduction of machine-readable tools for architectural design, which do not just focus on mere geometry or presentation, but on the richness of information embedded computationally in the design, has impacted the way architects approach and manipulate their designs. With the rapid acceleration in building information modeling (BIM) as a process which fosters machine-readable applications, architects and other participants in the design and construction industry are using BIM tools in full collaboration. As a trend which is already invading architectural practice, BIM is gradually transforming the culture of the profession in many ways. This culture is developing new properties for its participants, knowledge construction mechanisms, resources, and production machineries. This paper puts forward the assumption that BIM has caused a state of transformation in the epistemic culture of architectural practice. It appears that practice in the architecture, engineering and construction (AEC) industry is still in this phase of transformation; on the edge of developing a new culture. The paper attempts to address properties of such an emerging culture, and the new role architects are faced with to overcome its challenges.
email sherif.morad@gatech.edu
last changed 2009/01/07 07:05

_id ecaade2008_136
id ecaade2008_136
authors Riether, Gernot; Butler, Tom
year 2008
title Simulation Space
source Architecture in Computro [26th eCAADe Conference Proceedings / ISBN 978-0-9541183-7-2] Antwerpen (Belgium) 17-20 September 2008, pp. 133-142
summary It is the attempt here to test simulation tools in relation to a design process and speculate on strategies to not just integrate simulation tools in the design process but to use these tools to construct a new design environment for the architect.
keywords BIM, building information modeling, performance, simulation
series eCAADe
email gernot.riether@coa.gatech.edu
last changed 2008/09/09 13:55

_id ecaade2008_190
id ecaade2008_190
authors Russell, Peter; Elger, Dietrich
year 2008
title The Meaning of BIM
source Architecture in Computro [26th eCAADe Conference Proceedings / ISBN 978-0-9541183-7-2] Antwerpen (Belgium) 17-20 September 2008, pp. 531-536
summary The paper is a position paper, not a report about a research project. It concerns the paradigm-shift that is taking place in the CAAD software and its implications for the business of architecture and more importantly, for the education of future members of the profession. Twenty years ago the use of CAAD software as a replacement for hand drafting was starting. Since then the transformation is complete: hardly a final project in the universities is drawn by hand. Currently, we are witnessing a second paradigm shift and its name is BIM. The meaning of BIM is rooted in two significant differences to current CAAD software and this will have implications for teaching and practicing architecture. The first difference is the way the software structures information in the CAAD file. The standard way to save CAAD information was to organise simple geometric objects according to membership in groups and to sort them according to a layer-metaphor, which primarily controlled the visibility of the geometric elements. Three-dimensional modelling is/was nothing more than the same structure with a more complex geometry. BIM software changes this structure by storing classes of geometries and then to store the specific values of individual geometries according to factors that can be determined by external or internal logical factors. The implication for architects is that we have the chance to be the people in control of the building information model, so long as we invest the time and energy to fully understand what is happening to the building information during the planning process. If we ignore this, the real danger exists that the last control of the building’s final configuration will be usurped. As educators we are currently teaching students that will be leaving the schools in 2012 and beyond. By then, the paradigm-shift will be in full motion and so it behoves us to consider which skill sets we want the next generation of architects to possess. This means not just teaching students about how to use particular BIM software or how to program a certain parametric/genetic algorithm in a form-finding process. We need to teach our students to take the leadership in building information management and that means understanding and controlling how the building information flows, how the methodologies that are used by the consulting engineers affect our building models, and knowing what kind of logical inconsistencies (internal or external) can threaten the design intention.
keywords Building Information Modelling, Digital Curriculum, Architectural Pedagogy
series eCAADe
email russell@caad.arch.rwth-aachen.de, elger@koopx.de
last changed 2008/09/09 13:55

_id acadia08_214
id acadia08_214
authors Schlueter, Arno; Frank Thesseling
year 2008
title Balancing Design and Performance in Building Retrofitting: A Case Study Based on Parametric Modeling
source Silicon + Skin: Biological Processes and Computation, [Proceedings of the 28th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) / ISBN 978-0-9789463-4-0] Minneapolis 16-19 October 2008, 214-221
summary Retrofitting the existing building stock will become one of the key fields of action for architects in the future. Due to the raised awareness of CO2 emissions related to the energy consumption of buildings, architects have to increasingly consider parameters influencing the energy performance of their retrofit designs. This is a complex task especially in the early design stages as multiple dependencies between building form, construction and technical systems influence overall energy performance. The inability to cope with this complexity often leads to simple solutions such as the application of massive insulation on the outside, neglecting aesthetic expression and design flexibility. Digital models storing multidisciplinary building information make it possible to include performance parameters throughout the architectural design process. In addition to the geometric parameters constituting the form, semantic and topological parameters define building element properties and their dependencies. This offers an integrated view of the building. We present a case study utilizing mulit-parametric façade elements within a building information model for an integrated design approach. The case study is based on a retrofit project of a multi-family house with very poor energy performance. Within a design workshop a parametric building model was used for the development of the designs. An integrated analysis tool allowed an immediate performance assessment without importing or exporting building data. The students were able to freely define geometric and performance parameters to develop their design solution. Balancing between formal expression and energy performance lead to integrated design sketches, resulting in surprising solutions for the given design task.
keywords BIM; Integrative; Parametric; Performance; Sustainability
series ACADIA
last changed 2009/02/26 07:39

_id acadia08_478
id acadia08_478
authors Yan, Wie
year 2008
title Environment-Behavior Simulation: From CAD to BIM and Beyond
source Silicon + Skin: Biological Processes and Computation, [Proceedings of the 28th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) / ISBN 978-0-9789463-4-0] Minneapolis 16-19 October 2008, 478-485
summary This paper describes our research on environment-behavior simulation and focuses on the modeling of built environments using Computer-Aided Design (CAD) and Building Information Modeling (BIM). Our environment-behavior simulation addresses the problem of predicting and evaluating the impacts of built environments on their human inhabitants. We present simulation systems comprising an agent-based virtual user model and building models created with CAD and BIM tools. We compare the use of CAD vs. BIM with two case studies for environment-behavior simulation, and describe the essential parts of modeling buildings for the simulation, including geometry modeling—how the building components are shaped, semantic modeling—what the building components are, and pattern modeling—how the building components are used by users. We conclude that a new extensible and pattern-embedded BIM system will be necessary to facilitate environment-behavior simulation.
keywords Behavior; BIM; Environment; Information; Simulation
series ACADIA
last changed 2009/02/26 07:39

_id cdc2008_003
id cdc2008_003
authors Kalay, Yehuda E.
year 2008
title The Impact of Information Technology on Architectural Education in the 21st Century
source First International Conference on Critical Digital: What Matters(s)? - 18-19 April 2008, Harvard University Graduate School of Design, Cambridge (USA), pp. 3-6
summary Architecture is a technology-intensive discipline. It uses technology—both in the process of designing and in its products—to achieve certain functional, cultural, social, economic, and other goals. In turn, technology transforms the discipline. The importance of technology to the discipline and to the practice of architecture has been demonstrated again and again throughout history. In the 21st century, the advent of computer-aided design, computerassisted collaboration, construction automation, “intelligent” buildings, and “virtual” places, promise to have as much of an impact on architectural design processes and products as earlier technological advances have had. Like most other early adoptions of a technology, the first uses of computing in the service of architecture mimicked older methods: electronic drafting, modeling, and rendering. But this rather timid introduction is changing rapidly: new design and evaluation tools allow architects to imagine new building forms, more responsive (and environmentally more responsible) buildings, even radically new types of environments that blend physical with virtual space. Communication and collaboration tools allow architects, engineers, contractors, clients, and others to work much more closely than was possible before, resulting in more complex, more innovative, and more effective designs. Understanding and shaping this transformation are the basis of architectural education in the 21st century.
email kalay@berkeley.edu
last changed 2009/01/07 07:05

_id ecaade2008_174
id ecaade2008_174
authors Liapi , Katherine A.
year 2008
title Spatial Information Visualization Methods for Large Scale Infrastructure Projects
source Architecture in Computro [26th eCAADe Conference Proceedings / ISBN 978-0-9541183-7-2] Antwerpen (Belgium) 17-20 September 2008, pp. 617-624
summary For the communication of spatial information with regard to the design and construction of large scale urban infrastructure projects several visualization methods and technologies have been developed. The paper discusses two different trends in relevant technologies: a) those that use visualization to facilitate communication of construction planning information between architects, engineers, contractors, the public and other interested parties, and b) technologies that provide real time information on the conditions on the construction site.
keywords spatial information visualization, real time construction site modeling, construction schedule visualization, motion modeling & vualization
series eCAADe
email kliapi@upatras.gr
last changed 2008/09/09 13:55

_id caadria2008_50_session5a_409
id caadria2008_50_session5a_409
authors Wessel, Ginette M.; Eric J. Sauda, Remco Chang
year 2008
title Urban Visualization: Urban Design and Computer Visualization
source CAADRIA 2008 [Proceedings of the 13th International Conference on Computer Aided Architectural Design Research in Asia] Chiang Mai (Thailand) 9-12 April 2008, pp. 409-416
summary Historically, the city represents not just a collection of buildings, but also the concrete cosmology of the world. The importance of geometry in this context is that one can be assured that one’s understanding of the form of the city will correspond to meaning. It is this reading that is the canonical visualization method of the city form. But contemporary urban designers are confronted by cities with overlapping systems of movement and information that has made the reading of geometry insufficient for an understanding of the city. Our interdisciplinary team of researchers has been studying issues related to urban visualization from the perspectives of urban design and computer visualization. Together, we have published work demonstrating how very large and disparate data sets can be visualized and integrated in unique ways. Building on this existing work that connects the two disciplines, this paper presents a survey of six urban design methodologies that may be useful for visualization. Each approach is described through a brief history, a conceptual overview and a diagrammatic exegesis. The conclusion presents an overview of the complementary natures of the discourses in urban design and computer visualization and a prospectus for application of the identified methodologies to computer urban visualization. We conclude that urban theories can inform urban visualization both as a method of informing generation and run-time simplification of 3D geometric modeling and in managing information visualization overlay issues for the very large, over-lapping data sets.
keywords Visualization: urbanism
series CAADRIA
email gmwessel@uncc.edu, ejsauda@uncc.edu, rchang@uncc.edu
last changed 2012/05/30 19:29

_id cf2011_p127
id cf2011_p127
authors Benros, Deborah; Granadeiro Vasco, Duarte Jose, Knight Terry
year 2011
title Integrated Design and Building System for the Provision of Customized Housing: the Case of Post-Earthquake Haiti
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 247-264.
summary The paper proposes integrated design and building systems for the provision of sustainable customized housing. It advances previous work by applying a methodology to generate these systems from vernacular precedents. The methodology is based on the use of shape grammars to derive and encode a contemporary system from the precedents. The combined set of rules can be applied to generate housing solutions tailored to specific user and site contexts. The provision of housing to shelter the population affected by the 2010 Haiti earthquake illustrates the application of the methodology. A computer implementation is currently under development in C# using the BIM platform provided by Revit. The world experiences a sharp increase in population and a strong urbanization process. These phenomena call for the development of effective means to solve the resulting housing deficit. The response of the informal sector to the problem, which relies mainly on handcrafted processes, has resulted in an increase of urban slums in many of the big cities, which lack sanitary and spatial conditions. The formal sector has produced monotonous environments based on the idea of mass production that one size fits all, which fails to meet individual and cultural needs. We propose an alternative approach in which mass customization is used to produce planed environments that possess qualities found in historical settlements. Mass customization, a new paradigm emerging due to the technological developments of the last decades, combines the economy of scale of mass production and the aesthetics and functional qualities of customization. Mass customization of housing is defined as the provision of houses that respond to the context in which they are built. The conceptual model for the mass customization of housing used departs from the idea of a housing type, which is the combined result of three systems (Habraken, 1988) -- spatial, building system, and stylistic -- and it includes a design system, a production system, and a computer system (Duarte, 2001). In previous work, this conceptual model was tested by developing a computer system for existing design and building systems (Benr__s and Duarte, 2009). The current work advances it by developing new and original design, building, and computer systems for a particular context. The urgent need to build fast in the aftermath of catastrophes quite often overrides any cultural concerns. As a result, the shelters provided in such circumstances are indistinct and impersonal. However, taking individual and cultural aspects into account might lead to a better identification of the population with their new environment, thereby minimizing the rupture caused in their lives. As the methodology to develop new housing systems is based on the idea of architectural precedents, choosing existing vernacular housing as a precedent permits the incorporation of cultural aspects and facilitates an identification of people with the new housing. In the Haiti case study, we chose as a precedent a housetype called “gingerbread houses”, which includes a wide range of houses from wealthy to very humble ones. Although the proposed design system was inspired by these houses, it was decided to adopt a contemporary take. The methodology to devise the new type was based on two ideas: precedents and transformations in design. In architecture, the use of precedents provides designers with typical solutions for particular problems and it constitutes a departing point for a new design. In our case, the precedent is an existing housetype. It has been shown (Duarte, 2001) that a particular housetype can be encoded by a shape grammar (Stiny, 1980) forming a design system. Studies in shape grammars have shown that the evolution of one style into another can be described as the transformation of one shape grammar into another (Knight, 1994). The used methodology departs takes off from these ideas and it comprises the following steps (Duarte, 2008): (1) Selection of precedents, (2) Derivation of an archetype; (3) Listing of rules; (4) Derivation of designs; (5) Cataloguing of solutions; (6) Derivation of tailored solution.
keywords Mass customization, Housing, Building system, Sustainable construction, Life cycle energy consumption, Shape grammar
series CAAD Futures
email deborahbenros@gmail.com
last changed 2012/02/11 18:21

_id ecaade2008_024
id ecaade2008_024
authors Boeykens, Stefan; Neuckermans, Herman
year 2008
title Representational Limitations and Improvements in Building Information Modeling
source Architecture in Computro [26th eCAADe Conference Proceedings / ISBN 978-0-9541183-7-2] Antwerpen (Belgium) 17-20 September 2008, pp. 35-42
summary This paper discusses advantages and limitations of different representation types, illustrated with examples from current commercial Building Information Modeling applications. There is still a potential benefit in more thoroughly adapting additional representations to access and manage project data.The paper presents arguments to adapt a hybrid approach, where multiple representations should form a series of interfaces to interact with a building model. Inspiration is derived from software applications not associated with Building Information Modeling.
keywords BIM, Representation, Design Software, Digital Building Model
series eCAADe
email stefan.boeykens@asro.kuleuven.be, herman.neuckermans@asro.kuleuven
last changed 2008/09/09 13:55

_id sigradi2008_012
id sigradi2008_012
authors Dokonal, Wolfgang
year 2008
title What is the state of digital architectural design?
source SIGraDi 2008 - [Proceedings of the 12th Iberoamerican Congress of Digital Graphics] La Habana - Cuba 1-5 December 2008
summary What is the state of digital architectural design? The ubiquity of the computer in architecture can be seen in the many computer based presentations from famous architectural practices. BIM (Building Information Modelling) is the key word and we can see implementations in very ambitious projects all over the world. Glossy magazines show the results of this kind of architecture and predict that this is the future of our profession. But when we go out into the “small world” (in Europe) and talk with architects in small firms, there is a very different reality – at least at the moment. Although they all agree that the computer is crucial for their work, it is a love/hate relationship for many them. Most still use the computer purely as a drafting device and AutoCAD is still the dominant tool. Although many of them agree with the statement that you can use the computer for design, only a minority really use the computer as a design tool in the early design stages. To find out more about the reality of the use of computers in design in “small town Europe” we have been undertaking two different kinds of research over the past 4 years. The first one is an educational experiment using first year’s students to find out about the different qualities of designing with and without the computer. The results have been presented at previous conferences and, since we are doing a last run of these experiments this year, we will update and finalise our findings in this paper. To make it comparable to previous years, we use largely the same settings using the same type of student (first year) and the same project/site. We will also be comparing the results for students designing ‘freestyle’ ie in the way that they want against the previous years controlled groups. The second strand of research we have followed is a survey amongst practitioners and some of the above statements came out of this survey. We did this survey using a web questionnaire and focused on a particular region of Europe. Although the numbers of participants for this survey were quite satisfying we are re-running the survey in a different region and country to see whether there are significant differences. The results of our research and our experience as teachers and architects leads us to the main question of how we can give recommendations on how to teach design the new generation of architects. In many aspects most of the teaching that is done in our faculties is still strictly divided into teaching design and teaching computer skills. The crucial question for architectural education are the implications of the ubiquity of the computer will have especially in the field of design. We will try to give some suggestions for these effects this could have on our teaching. In the long run, this is the only way to avoid some of the pitfalls and bring the benefits of computers in design to our small architectural firms. The paper will present a summary of the results of our research and try to propose an answer to the question: “What is the state of digital design in small town Europe?”
series SIGRADI
email dokonal@tugraz.at
last changed 2016/03/10 08:50

_id cf2011_p035
id cf2011_p035
authors Langenhan, Christoph; Weber Markus, Petzold Frank, Liwicki Marcus, Dengel Andreas
year 2011
title Sketch-based Methods for Researching Building Layouts through the Semantic Fingerprint of Architecture
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 85-102.
summary The paper focuses on the early stages of the design process where the architect needs assistance in finding reference projects and describes different aspects of a concept for retrieving previous design solutions with similar layout characteristics. Such references are typically used to see how others have solved a similar architectural problem or simply for inspiration. Current electronic search methods use textual information rather than graphical information. The configuration of space and the relations between rooms are hard to represent using keywords, in fact transforming these spatial configurations into verbally expressed typologies tends to result in unclear and often imprecise descriptions of architecture. Nowadays, modern IT-technologies lead to fundamental changes during the process of designing buildings. Digital representations of architecture require suitable approaches to the storage, indexing and management of information as well as adequate retrieval methods. Traditionally planning information is represented in the form of floor plans, elevations, sections and textual descriptions. State of the art digital representations include renderings, computer aided design (CAD) and semantic information like Building Information Modelling (BIM) including 2D and 3D file formats such as Industry Foundation Classes (IFC) (IAI, 2010). In the paper, we examine the development of IT-technologies in the area of case-based reasoning (Richter et al., 2007) to provide a sketch-based submission and retrieval system for publishing and researching building layouts including their manipulation and subsequent use. The user interface focuses on specifying space and their relations by drawing them. This query style supports the spatial thinking approach that architects use, who often have a visual representation in mind without being able to provide an accurate description of the spatial configuration. The semantic fingerprint proposed by (Langenhan, 2008) is a description and query language for creating an index of floor plans to store meta-data about architecture, which can be used as signature for retrieving reference projects. The functional spaces, such as living room or kitchen and the relation among on another, are used to create a fingerprint. Furthermore, we propose a visual sketch-based interface (Weber et al., 2010) based on the Touch&Write paradigm (Liwicki et al., 2010) for the submission and the retrieval phase. During the submission process the architect is sketching the space-boundaries, space relations and functional coherence's. Using state of the art document analysis techniques, the architects are supported offering an automatic detection of room boundaries and their physical relations. During the retrieval the application will interpret the sketches of the architect and find reference projects based on a similarity based search utilizing the semantic fingerprint. By recommending reference projects, architects will be able to reuse collective experience which match the current requirements. The way of performing a search using a sketch as a query is a new way of thinking and working. The retrieval of 3D models based on a sketched shape are already realized in several domains. We already propose a step further, using the semantics of a spatial configuration. Observing the design process of buildings reveals that the initial design phase serves as the foundation for the quality of the later outcome. The sketch-based approach to access valuable information using the semantic fingerprint enables the user to digitally capture knowledge about architecture, to recover and reuse it in common-sense. Furthermore, automatically analysed fingerprints can put forward both commonly used as well as best practice projects. It will be possible to rate architecture according to the fingerprint of a building.
keywords new media, case-based reasoning, ontology, semantic building design, sketch-based, knowledge management
series CAAD Futures
email langenhan@tum.de
last changed 2012/02/11 18:21

_id sigradi2008_078
id sigradi2008_078
authors Lobos, Danny; Dirk Donath
year 2008
title Top down and bottom up – using BIM to merge these two design strategies.
source SIGraDi 2008 - [Proceedings of the 12th Iberoamerican Congress of Digital Graphics] La Habana - Cuba 1-5 December 2008
summary Our current research is focused on the optimization and evaluation of the architectural building design (gestalt), related and in balance to the inner organization of a building, the floorplan layout. This paper is focused on the impact of Space Layout Planning supported by Information and Communication Technologies (ICT) applied to Architectural Design. We present an overview and wide description of the „architectural design“, the classical definition and methods; and its evolution in practice since the ICT tools impact of the last forty years. Definition such as space program, space relationships, space function are wide discussed to understand the phenomena of architectural layout design, the parameters, variables, constraints and goals of each design. Second we present the state of the art and the current techniques and approaches (optimization, generative systems, artificial intelligence, genetic algorithms, physically based modeling, etc), a classification structure is generated to visualize the areas of impact and use of each technique (different areas from architectural design). Finally we described a complete framework to research and develop our own methodologies based on a specific case of architectural design, the current CAD tools and the possible develop of new tools using the impact of BIM systems.
keywords space layout planning, computer aided design, functional planning, architectural floor layout, design methodologies, simulation and evaluation
series SIGRADI
email archdl@gmail.com
last changed 2016/03/10 08:55

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 24HOMELOGIN (you are user _anon_30709 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002