CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 487

_id acadia08_066
id acadia08_066
authors Ahlquist, Sean; Moritz Fleischmann
year 2008
title Material & Space: Synthesis Strategies based on Evolutionary Developmental Biology
source Silicon + Skin: Biological Processes and Computation, [Proceedings of the 28th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) / ISBN 978-0-9789463-4-0] Minneapolis 16-19 October 2008, 66-71
summary A material system can be defined as a set of self-organized materials, defining a certain spatial arrangement. In architecture, this material arrangement acts as a threshold for space, though space often only appears as a by-product of the material organization. Treating space as a resulting, therefore secondary, independent product minimizes the capacity to generate architecture that is astutely aware of concerns of functionality, environment and energy. An effective arrangement of material can only be determined in relation to the spaces that it defines. When proposing a more critical approach, a material system can be seen as an intimate inter-connection and reciprocal exchange between the material construct and the spatial conditions. It is necessary to re-define material system as a system that coevolves spatial and material configurations through analysis of the resultant whole, in a process of integration and evaluation. ¶ With this understanding of material system comes an expansion in the number of criteria that are simultaneously engaged in the evolution of the design. The material characteristics, as well as the spatial components and forces (external and internal), are pressures onto the arrangement of material and space. ¶ This brings a high degree of complexity to the process. Biological systems are built on methods that resolve complex interactions through sets of simple yet extensible rules. Evolutionary Developmental Biology explains how growth is an interconnected process of external forces registering fitness into a fixed catalogue of morphological genetic tools. Translating the specific framework for biological growth into computational processes, allows the pursuit of an architecture that is fully informed by the interaction of space and material.
keywords Biology; Computation; Material; Parametric; System
series ACADIA
last changed 2009/02/26 07:39

_id sigradi2008_103
id sigradi2008_103
authors Baltazar, Ana Paula; Maria Lucia Malard, Silke Kapp, Pedro Schultz
year 2008
title From physical models to immersive collaborative environments: testing the best way for homeless people to visualise and negotiate spaces
source SIGraDi 2008 - [Proceedings of the 12th Iberoamerican Congress of Digital Graphics] La Habana - Cuba 1-5 December 2008
summary This paper describes an experiment to investigate the best way for lay people to use representation to visualise and negotiate space. It was motivated by our observations in workshops for digital inclusion in the context of a housing project for a homeless association. Computers were used to make it easier for the community to understand and change the spaces in real time. The first workshops proved that our approach was efficient as an exercise but not certainly effective concerning the understanding of spatial qualities. So we have designed an experiment to compare the usability of different media in participatory design processes. For that we have adapted the ‘Usability’ methodology, which is fully described in the paper. We started with three main questions. The first concerned the effectiveness of different media to represent spatial quality; the second concerned the best way for novices to approach space, whether by refurbishing a pre-existing space or by starting from the scratch; and the third concerned the effectiveness of negotiation by means of discourse and by means of or action. We also had two main hypothesis: one coming from research on digital environments and stereo visualisation, indicating that the more people feel immersed in the represented environment the more they are able to correlate it with physical space; and the other coming from our own observations in the participatory design workshops, in which the collective decision-making was manipulated by those people with more advanced communication skills who use their ability in an authoritative way regardless of the relevance of what they have to say. This paper describes the whole experiment, which was an exercise of spatial negotiation in 5 versions. In the first version we provided fixed digital views of a room in plan and axonometry; for another two versions we provided a physical model of the room in 1:10 scale, with some pieces of the existing furniture in different scales. This was done to check if people were just playing with a puzzle or actually grasping the correspondence between representation and the object or the space represented. One version proposes refurbishment and the other starts from the scratch. And the last two versions repeated the same task made with the physical model, but this time using a 3D interactive digital model. People were required not only to organise the furniture in the space but also to build a full scale cardboard structure and organise the real furniture reproducing their proposed model. Their comments on the spaces they had built confronted with what they had imaged when working with the model has enabled us to compare the different models, as also the different ways of negotiating spaces. This paper describes this experiment in detail concluding that 3D digital interactive models are far more effective than physical models and 2D drawings; when negotiation happens by means of action it provides more creative results than when the discoursive practice prevails; people are more creative when they start something from scratch, though they spend more time. The results of this experiment led us to formulate a new hypothesis leading to the development of an immersive collaborative environment using stereoscopy.
keywords Visualisation, negotiation, immersive environment, digital interfaces, homeless people
series SIGRADI
email anapaulabaltazar@hotmail.com
last changed 2016/03/10 08:47

_id cf2011_p127
id cf2011_p127
authors Benros, Deborah; Granadeiro Vasco, Duarte Jose, Knight Terry
year 2011
title Integrated Design and Building System for the Provision of Customized Housing: the Case of Post-Earthquake Haiti
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 247-264.
summary The paper proposes integrated design and building systems for the provision of sustainable customized housing. It advances previous work by applying a methodology to generate these systems from vernacular precedents. The methodology is based on the use of shape grammars to derive and encode a contemporary system from the precedents. The combined set of rules can be applied to generate housing solutions tailored to specific user and site contexts. The provision of housing to shelter the population affected by the 2010 Haiti earthquake illustrates the application of the methodology. A computer implementation is currently under development in C# using the BIM platform provided by Revit. The world experiences a sharp increase in population and a strong urbanization process. These phenomena call for the development of effective means to solve the resulting housing deficit. The response of the informal sector to the problem, which relies mainly on handcrafted processes, has resulted in an increase of urban slums in many of the big cities, which lack sanitary and spatial conditions. The formal sector has produced monotonous environments based on the idea of mass production that one size fits all, which fails to meet individual and cultural needs. We propose an alternative approach in which mass customization is used to produce planed environments that possess qualities found in historical settlements. Mass customization, a new paradigm emerging due to the technological developments of the last decades, combines the economy of scale of mass production and the aesthetics and functional qualities of customization. Mass customization of housing is defined as the provision of houses that respond to the context in which they are built. The conceptual model for the mass customization of housing used departs from the idea of a housing type, which is the combined result of three systems (Habraken, 1988) -- spatial, building system, and stylistic -- and it includes a design system, a production system, and a computer system (Duarte, 2001). In previous work, this conceptual model was tested by developing a computer system for existing design and building systems (Benr__s and Duarte, 2009). The current work advances it by developing new and original design, building, and computer systems for a particular context. The urgent need to build fast in the aftermath of catastrophes quite often overrides any cultural concerns. As a result, the shelters provided in such circumstances are indistinct and impersonal. However, taking individual and cultural aspects into account might lead to a better identification of the population with their new environment, thereby minimizing the rupture caused in their lives. As the methodology to develop new housing systems is based on the idea of architectural precedents, choosing existing vernacular housing as a precedent permits the incorporation of cultural aspects and facilitates an identification of people with the new housing. In the Haiti case study, we chose as a precedent a housetype called “gingerbread houses”, which includes a wide range of houses from wealthy to very humble ones. Although the proposed design system was inspired by these houses, it was decided to adopt a contemporary take. The methodology to devise the new type was based on two ideas: precedents and transformations in design. In architecture, the use of precedents provides designers with typical solutions for particular problems and it constitutes a departing point for a new design. In our case, the precedent is an existing housetype. It has been shown (Duarte, 2001) that a particular housetype can be encoded by a shape grammar (Stiny, 1980) forming a design system. Studies in shape grammars have shown that the evolution of one style into another can be described as the transformation of one shape grammar into another (Knight, 1994). The used methodology departs takes off from these ideas and it comprises the following steps (Duarte, 2008): (1) Selection of precedents, (2) Derivation of an archetype; (3) Listing of rules; (4) Derivation of designs; (5) Cataloguing of solutions; (6) Derivation of tailored solution.
keywords Mass customization, Housing, Building system, Sustainable construction, Life cycle energy consumption, Shape grammar
series CAAD Futures
email deborahbenros@gmail.com
last changed 2012/02/11 18:21

_id sigradi2008_077
id sigradi2008_077
authors Briones, Carolina
year 2008
title A collaborative project experience in an architectural framework, working with Open Source applications and physical computing [Diseño de Plataformas Digitales e Interactivas: una experiencia educativa trabajando colaborativamente con aplicaciones de Código Abierto y Computación Física]
source SIGraDi 2008 - [Proceedings of the 12th Iberoamerican Congress of Digital Graphics] La Habana - Cuba 1-5 December 2008
summary Nowadays, thanks to the telecommunication revolution and therefore the massive spread of Internet, we have seen the come up of international architectural offices with branches located in different continent, working in a collaborative fashion, surpassing physical and time frontiers. At the same time, the multidisciplinary work between designers, architects, engineers, programmers and even biologist, between others, have been taking place in the new network society. All transformations also supported by the arising of FOSS (Free Open Source Software) and the virtual communities behind them, which allow the creation of non-traditional or specific software, the association between disciplines, and also, the formation of meeting scenarios for a mixture of individuals coming up with multiple motivation to coexist in collaborative environment. Furthermore, it is possible to argue that Open Source applications are also the reflection of a social movement, based on the open creation and exchange of information and knowledge. Do the appeared of FOSS compel us to re-think our working and teaching methods? Do they allow new modes of organizing and collaborating inside our architectural practices?. This paper would like to address these questions, by presenting the results of the “Experience Design” course, which by implementing teaching methods based on Open Source principles and cutting-edge tools, seeks to approach students to these new “way of do”, knowledge and methodologies, and overall, focus them on the science behind the computer. This paper describes the “Experience Design” course, in which architectural graduate students of Universidad Diego Portales (Chile), put for first time their hands on the creation of interactive interfaces. By acquiring basic knowledge of programming and physical computing, students built in a collaborative way a responsive physical installation. The course use as applications “Processing” and “Arduino”. The first one is an Open Source programming language and environment for users who want to program images, animation, and interactions. It has a visual context and serve as a software sketchbook and professional production tool. Processing is a project initiated by Ben Fry and Casey Reas, at the MIT Media Lab (www.processing.org). The second is an Open Source electronics prototyping platform based on flexible, easy-to-use hardware and software. Arduino has a microcontroller (programmed with Processing language) which can sense the environment by receiving input from a variety of sensors and can affect its surroundings by controlling lights, motors, and other actuators (www.arduino.cc). Both environments shared a growing community of people working in related projects and extending useful assistance for beginners. In this paper it is presented the current state of the pilot course and some of the initials results collected during the process. Students and teacher’s debates and evaluations of the experience have been exposed. Together with a critical evaluation in relation to the accomplishment of the effort of place together different disciplines in one collaborative project akin, architecture, design, programming and electronic. Finally, futures modifications of the course are discussed, together with consideration to take in account at the moment of bring Open Source and programming culture into the student curriculum.
keywords Physical computing, teaching framework, Open Source, Interactive Installation
series SIGRADI
email fili_pax@yahoo.com
last changed 2016/03/10 08:47

_id ddss2008-33
id ddss2008-33
authors Charlton, James A.; Bob Giddings and Margaret Horne
year 2008
title A survey of computer software for the urban designprocess
source H.J.P. Timmermans, B. de Vries (eds.) 2008, Design & Decision Support Systems in Architecture and Urban Planning, ISBN 978-90-6814-173-3, University of Technology Eindhoven, published on CD
summary Urban design is concerned with the shape, the surface and the physical arrangement of all kinds of urban elements, the basic components that make up the built environment, at the level of buildings, spaces and human activities. It is also concerned with the non-visual aspects of the environment, such as noise, wind and temperature and humidity. The city square is a particular urban element which can take many forms and its geometrical relationships such as maximum dimensions, ratio of width to length and building height to length have been analysed for centuries (Alberti 1475), (Vitruvius 1550), (Sitte 1889), (Corbett 2004). Within the current urban design process there are increasing examples of three dimensional computer representations which allow the user to experience a visual sense of the geometry of city squares in an urban landscape. Computer-aided design and Virtual Reality technologies have recently contributed to this visual assessment, but there have been limited attempts at 3D computer representations which allow the user to experience a greater sense of the urban space. This paper will describe a survey of computer tools which could support a more holistic approach to urban design and which could be used to simulate a number of urban texture and urban quality aspects. It will provide a systematic overview of currently available software that could support the simulation of building density, height, colour and style as well as conditions relating to noise, shading, heat, natural and artificial light. It will describe a methodology for the selection and filtering of appropriate computer applications and offer an initial evaluation of these tools for the analysis and representation of the three-dimensional geometry, urban texture and urban quality of city centre spaces. The paper is structured to include an introduction to the design criteria relating to city centre spaces which underpins this research. Next the systematic review of computer software will be described, and selected tools will undergo initial evaluation. Finally conclusions will be drawn and areas for future research identified.
keywords Urban design, Software identification, 3D modelling, Pedestrian modelling, Wind modelling, Noise mapping, Thermal comfort, VR Engine
series DDSS
last changed 2008/09/01 15:06

_id cdc2008_111
id cdc2008_111
authors Dounas, Theodore
year 2008
title Algebras, Geometries and Algorithms, Or How Architecture fought the Law and the Law Won
source First International Conference on Critical Digital: What Matters(s)? - 18-19 April 2008, Harvard University Graduate School of Design, Cambridge (USA), pp. 111-114
summary An Architect is required to deal quite often with a restrictive piece of Building Code during his/her practice, especially in traditional and hence protected environments. The paper examines the algorithmic nature of such a Building Code and in particular the President's Decree governing the design and architecture of traditional housing in the Old Town, “Ano Poli”, in Thessaloniki Greece. The nature of the constraints and descriptions the Decree contains is algorithmic, which means that the descriptions of the constraints is procedural with a specific start and a specific finish for a house design. The problem with such descriptions in a Law is that, although an architect can develop his/her own interpretations of the traditional language of the area, or even be able to trace his/her designs using shape grammars derived from traditional buildings preserved until today, the final result cannot be approved for a building permit since it does not comply with the Presidential Decree. We suggest that the nature of such legislation should be algebraic in nature and not algorithmic, since algebras allow an amount of freedom in development of architectural language while also permitting the restriction of scale, height and so on. This coupling of architectural design freedom and effective restriction on metrics of new buildings contained in algebraic systems can be shown to be much more effective than the established algorithmic system. The Decree's content comprises of regulations concerning the volume, form and use of new buildings in the protected and conserved built environment of “Ano Poli” in Thessaloniki.
last changed 2009/01/07 07:05

_id cdc2008_105
id cdc2008_105
authors Friedrich, Christian
year 2008
title Information-matter hybrids: Prototypes engaging immediacy as architectural quality
source First International Conference on Critical Digital: What Matters(s)? - 18-19 April 2008, Harvard University Graduate School of Design, Cambridge (USA), pp. 105-110
summary ‘Immediate Architecture’ is an exploratory investigation into possibilities of immediate interactive and constructive interaction with the built environment supported by digital technologies. Aim is to realize interactive reconfigurable architectural objects that support their informational and material reconfiguration in real-time. The outcome is intended to become a synergetic amalgam of interactive architecture, parametric design environment, automated component fabrication and assembly. To this end, computational and material strategies are developed to approach the condition of immediate architecture and applied in real-world prototypes. A series of developed techniques are presented, ranging from realtime volumetric modeling, behavioral programming and meta-application protocol to streaming fabrication and dynamic components for interactive architecture.
email h.c.friedrich@gmail.com
last changed 2009/01/07 07:05

_id acadia08_072
id acadia08_072
authors Frumar, Jerome
year 2008
title An Energy Centric Approach to Architecture: Abstracting the material to co-rationalize design and performance
source Silicon + Skin: Biological Processes and Computation, [Proceedings of the 28th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) / ISBN 978-0-9789463-4-0] Minneapolis 16-19 October 2008, 72-81
summary This paper begins by exploring matter as an aggregated system of energy transactions and modulations. With this in mind, it examines the notion of energy driven form finding as a design methodology that can simultaneously negotiate physical, environmental and fabrication considerations. The digital workspace enables this notion of form finding to re-establish itself in the world of architecture through a range of analytic tools that algorithmically encode real world physics. Simulating the spatial and energetic characteristics of reality enables virtual “form generation models that recognize the laws of physics and are able to create ‘minimum’ surfaces for compression, bending [and] tension” (Cook 2004). The language of energy, common in engineering and materials science, enables a renewed trans-disciplinary dialogue that addresses significant historic disjunctions such as the professional divide between architects and engineers. Design becomes a science of exploring abstracted energy states to discover a suitable resonance with which to tune the built environment. ¶ A case study of one particular method of energy driven form finding is presented. Bi-directional Evolutionary Structural Optimization (BESO) is a generative engineering technique developed at RMIT University. It appropriates natural growth strategies to determine optimum forms that respond to structural criteria by reorganizing their topology. This dynamic topology response enables structural optimization to become an integrated component of design exploration. A sequence of investigations illustrates the flexibility and trans-disciplinary benefits of this approach. Using BESO as a tool for design rather than purely for structural optimization fuses the creative approach of the architect with the pragmatic approach of the engineer, enabling outcomes that neither profession could develop in isolation. The BESO case study alludes to future design processes that will facilitate a coherent unfolding of design logic comparable to morphogenesis.
keywords Energy; Form-Finding; Morphogenesis; Optimization; Structure
series ACADIA
last changed 2009/02/26 07:39

_id cdc2008_301
id cdc2008_301
authors Herron, Jock
year 2008
title Shaping the Global City: The Digital Culture of Markets, Norbert Wiener and the Musings of Archigram
source First International Conference on Critical Digital: What Matters(s)? - 18-19 April 2008, Harvard University Graduate School of Design, Cambridge (USA), pp. 301-308
summary The contemporary “built environment” as conceived by designers – be it actual or virtual; be it architecture, landscape, industrial products or, more purely, art – is increasingly generated using powerful computational tools that are shaping the culture of the design professions, so much so that the phrase “digital culture” aptly applies. Designers are rightly inclined to believe that the emerging contemporary landscape – especially in thriving global cities like New York, London and Tokyo – has recently been and will continue to be shaped in important ways by digital design. That will surely be the case. However, design does not exist in a material vacuum. Someone pays for it. This essay argues that the primary shaper of global cities today is another “digital culture”, one defined by the confluence of professions and institutions that constitute our global financial markets. The essay explores the common origins of these two cultures – design and finance; the prescient insights of Archigram into the cybernetic future of cities; the spatial implications of nomadic “digitized” capital and the hazards of desensitizing – in many ways, dematerializing – the professional practices of design and finance. The purpose of the essay is not to establish primacy of one over the other. Especially in the case of urban design, they are interdependent. The purpose is to explore the connection.
email jherron@gsd.harvard.edu
last changed 2009/01/07 07:05

_id cf2011_p108
id cf2011_p108
authors Iordanova, Ivanka; Forgues Daniel, Chiocchio François
year 2011
title Creation of an Evolutive Conceptual Know-how Framework for Integrative Building Design
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 435-450.
summary Low productivity of the building sector today is attributed to the fragmentation of tasks, disciplines and responsibilities, as well as to the resistance to adopt integrative work processes and digital means. The increased complexity of architectural projects and the aroused social consciousness for sustainable environment calls for integrative design collaboration. Thus, there is need for a Conceptual Framework combining work processes, technological means and policy aspects. According to the literature, integrative multidisciplinary design is a strategy resulting in high performance buildings nurturing sustainable way of living (Reed et al. 2009, Krygiel & Nies 2008). Responding to the increased technological complexity of our built environment, as well as to the objective of meeting multiple criteria of quality, both necessitating multidisciplinary collaboration during design, Building Information Modeling (BIM) is seen as a powerful means for fostering quality, augmenting productivity and decreasing loss in construction. Based on recent research, we can propose that a sustainable building can be designed through an integrative design process (IDP) which is best supported by BIM. However, our ongoing research program and consultations with advanced practitioners underscore a number of limitations. For example, a large portion of the interviewed professionals and construction stakeholders do not necessarily see a link between sustainable building, integrative design process and BIM, while in our opinion, their joint use augments the power of each of these approaches taken separately. Thus, there is an urgent necessity for the definition of an IDP-BIM framework, which could guide the building industry to sustainable results and better productivity. This paper defines such a framework, whose theoretical background lays on studies in social learning (activity theory and situated action theories). These theories suggest that learning and knowledge generation occurs mainly within a social process defined as an activity. This corresponds to the context in which the IDP-BIM framework will be used, its final objective being the transformation of building design practices. The proposed IDP-BIM framework is based on previous research and developments. Thus, firstly, IDP process was well formalized in the Roadmap for the Integrated Design Process‚ (Reed et al.) which is widely used as a guideline for collaborative integrative design by innovating practices in USA and Canada. Secondly, the National Building Information Modeling Standard (NBIMS) of the USA is putting an enormous effort in creating a BIM standard, Succar (2008) recently proposed a conceptual framework for BIM, but BIM ontology is still under development (Gursel et al 2009). Thirdly, an iterative design process bound to gating reviews (inspired from software development processes) was found to be successful in the context of multidisciplinary design studios (reported in our previous papers). The feedback from this study allowed for modifications and adjustments included in the present proposal. The gating process assures the good quality of the project and its compliance to the client's requirements. The challenge of this research is to map the above mentioned approaches, processes and technologies into the design process, thus creating an integrated framework supporting and nurturing sustainable design. The IDP-BIM framework can be represented by a multidimensional matrix linked to a semantic network knowledge database: - the axes of the matrix being the project timeline, the design process actors and building stakeholders (architect, engineers, client, contractor, environmental biologist, etc.), or different aspects of building performance (environmental, functional, social, interior environment quality, cost, etc.); and - the knowledge database providing multiple layers of semantic support in terms of process, domain knowledge, technology and workflow at a given moment of the project and for a given actor or building aspect. The IDP-BIM framework is created as an evolutive digital environment for know-how and will have an established protocol for regular updates. The paper will firstly present the state of the art in IDP and BIM. Secondly, it will expose the methodology used for the definition of the Framework, followed by a description of its structure, contents and digital implementation. Then, some scenarios for the use of the Framework will be shown as validation.
keywords integrated design process, BIM, multidisciplinary design, conceptual framework
series CAAD Futures
email ivanka.iordanova@videotron.ca
last changed 2012/02/11 18:21

_id ecaade2008_074
id ecaade2008_074
authors Pauwels, Pieter; Verstraeten, Ruben; Meeus, Wim; De Meyer, Ronald; Van Campenhout, Jan
year 2008
title Industry Foundation Classes: A Space-Based Model Scheme?
source Architecture in Computro [26th eCAADe Conference Proceedings / ISBN 978-0-9541183-7-2] Antwerpen (Belgium) 17-20 September 2008, pp. 117-124
summary This paper illustrates our findings concerning space based design methodologies and interoperability issues for today’s Building Information Modeling (BIM) environments. A method is elaborated which enables building designers to perform an automated energy use analysis, based on an Industry Foundation Classes (IFC) model derived from a commercial BIM environment, in this case Autodesk Revit 9.1. A prototype application was built, which evaluates the building model as well as vendor-neutral exchange mechanisms, in accordance with the Flemish Energy Performance Regulation (EPR) standard. Several issues regarding the need for space-based building models are identified and algorithms are developed to overcome possible shortcomings.
keywords IFC, BIM, Revit, EPBD
series eCAADe
email pieter.pauwels@ugent.be, ruben.verstraeten@ugent.be, wim.meeus@ugent.be, ronald.demeyer@ugent.be, jan.vancampenhout@ugent.be
last changed 2008/09/09 13:55

_id caadria2008_8_session1b_068
id caadria2008_8_session1b_068
authors Schoch, Odilo and Peter Russell
year 2008
title Kanban as a Supporting Tool for the SUSTAINABLE Design and Operation of Smart Buildings The potential of the Toyota Production System in Architecture
source CAADRIA 2008 [Proceedings of the 13th International Conference on Computer Aided Architectural Design Research in Asia] Chiang Mai (Thailand) 9-12 April 2008, pp. 68-74
summary This paper describes the translation of the process management tool ‘Kanban’ and its adjacent Toyota Production System into an architectural design supporting tool in the context of computer integrated buildings. The triggering question is: ‘How can architects handle requirements and services of ubiquitous computing in relation to their cursory knowledge about networked services and its unpredictable future development?’. The paper develops a system called ‘Ubicomp-Kanban’ based on the characteristics Toyota Production System. It is suitable for both design and operation of binary networked services in built environment in selected architectural scales and selected functions. The application of the system allows more precise planning and resource optimized operation of academic buildings. The paper does not intend to set up a new approach for building information models (BIM).
keywords pervasive computing, smart buildings, resource optimization, simulation, sustainability, Toyota Production System, kaizen, kanban
series CAADRIA
email {schoch, russell}@caad.arch.rwth-aachen.de
last changed 2012/05/30 19:29

_id ddss2008-16
id ddss2008-16
authors van den Berg, Pauline E.W.; Theo A. Arentze and Harry J.P. Timmermans
year 2008
title Pauline E.W. van den Berg, Theo A. Arentze and Harry J.P. Timmermans
source H.J.P. Timmermans, B. de Vries (eds.) 2008, Design & Decision Support Systems in Architecture and Urban Planning, ISBN 978-90-6814-173-3, University of Technology Eindhoven, published on CD
summary New information and communication technologies (ICT’s), gain importance and are changing people’s daily lives. With the introduction of new ICT’s, alternatives for face-to-face contacts and physical presence are provided. In that sense, ICT may offer a substitute to physical travel. Other potential relationships between telecommunication and travel are neutrality, complementation or modification. The relationship between ICT and activitytravel patterns has received a substantial amount of attention recently. However, a link with the wider activity patterns of individuals and households and environmental characteristics is missing in existing studies. The spatial and mobility impacts of social networks are not well known either. However, social networks are crucial to an understanding of travel behaviour. The most important part of travel demand for non-work purposes in terms of distance travelled is for socializing with network members. Hence, individuals’ social network characteristics are relevant for their propensity to perform social activities. The study of social networks can provide new insights to understand the generation of social activities and travel involved. In order to increase our understanding of the interrelationships between properties of the built environment, ICT-use, social networks and activity-travel patterns, these links should be the starting point for analysis. This paper presents a data collection instrument that was developed to study these links and the results of an application of the instrument in a survey among a large sample of households in the Eindhoven region, and discusses the implications of the findings for planning support models.
keywords Social networks, social interaction, ICT, activity-travel, communication diary
series DDSS
last changed 2008/09/01 15:06

_id acadia08_478
id acadia08_478
authors Yan, Wie
year 2008
title Environment-Behavior Simulation: From CAD to BIM and Beyond
source Silicon + Skin: Biological Processes and Computation, [Proceedings of the 28th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) / ISBN 978-0-9789463-4-0] Minneapolis 16-19 October 2008, 478-485
summary This paper describes our research on environment-behavior simulation and focuses on the modeling of built environments using Computer-Aided Design (CAD) and Building Information Modeling (BIM). Our environment-behavior simulation addresses the problem of predicting and evaluating the impacts of built environments on their human inhabitants. We present simulation systems comprising an agent-based virtual user model and building models created with CAD and BIM tools. We compare the use of CAD vs. BIM with two case studies for environment-behavior simulation, and describe the essential parts of modeling buildings for the simulation, including geometry modeling—how the building components are shaped, semantic modeling—what the building components are, and pattern modeling—how the building components are used by users. We conclude that a new extensible and pattern-embedded BIM system will be necessary to facilitate environment-behavior simulation.
keywords Behavior; BIM; Environment; Information; Simulation
series ACADIA
last changed 2009/02/26 07:39

_id ddss2008-23
id ddss2008-23
authors Zeiler, Wim
year 2008
title Morphologic Multi Criteria Decision support forconceptual Integral Design of Flex(ible En)ergyInfrastructures
source H.J.P. Timmermans, B. de Vries (eds.) 2008, Design & Decision Support Systems in Architecture and Urban Planning, ISBN 978-90-6814-173-3, University of Technology Eindhoven, published on CD
summary To ensure a good information exchange between different disciplines during the conceptual phase of design a functional design process structuring technique can be used; Integral Design. The design phases and abstraction levels form the dimensions of Integral Design method/contents matrix. Integral Design method is developed based on the combination of a prescriptive approach, Methodical Design, and a descriptive approach, Reflective practice. This design methodology uses morphology to provide an overview of the consider functions/aspects and their solution alternatives. This morphological approach is combined with the Kesselring method a visualization technique, where the different design variants can be compared with each other. It forms an excellent method for Multi Criteria Decision Making in the conceptual phase of design. This paper investigates the application of Integral Design and Multi Criteria Decision Making for design of Flex(ible En)ergy infrastructure for the built environment.
keywords Design & Decision Support Systems, Integral Design, Kesselring method
series DDSS
last changed 2008/09/01 15:06

_id ddss2008-41
id ddss2008-41
authors Zimmermann, Gerhard
year 2008
title Individual Comfort in Open-Plan OfficesA Case Study
source H.J.P. Timmermans, B. de Vries (eds.) 2008, Design & Decision Support Systems in Architecture and Urban Planning, ISBN 978-90-6814-173-3, University of Technology Eindhoven, published on CD
summary Although it was proven by many field studies of office environments that complete thermal user satisfaction can only be achieved by setting the indoor climate to individual user preferences, open-plan offices do not support this requirement. In addition, irregular occupancy of such offices leads to suboptimal energy usage. This paper will show how the design of such offices can be supported by tools that integrate individual thermal user preferences and schedules into performance simulations to test and evaluate different partitioning structures, HVAC equipment, and control strategies in regard to satisfaction and energy consumption. A case study is used as demonstrator.
keywords Computer Aided Architectural Design, Simulation of Users and the Built Environment, User Satisfaction
series DDSS
last changed 2008/09/01 15:06

_id cf2011_p109
id cf2011_p109
authors Abdelmohsen, Sherif; Lee Jinkook, Eastman Chuck
year 2011
title Automated Cost Analysis of Concept Design BIM Models
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 403-418.
summary AUTOMATED COST ANALYSIS OF CONCEPT DESIGN BIM MODELS Interoperability: BIM models and cost models This paper introduces the automated cost analysis developed for the General Services Administration (GSA) and the analysis results of a case study involving a concept design courthouse BIM model. The purpose of this study is to investigate interoperability issues related to integrating design and analysis tools; specifically BIM models and cost models. Previous efforts to generate cost estimates from BIM models have focused on developing two necessary but disjoint processes: 1) extracting accurate quantity take off data from BIM models, and 2) manipulating cost analysis results to provide informative feedback. Some recent efforts involve developing detailed definitions, enhanced IFC-based formats and in-house standards for assemblies that encompass building models (e.g. US Corps of Engineers). Some commercial applications enhance the level of detail associated to BIM objects with assembly descriptions to produce lightweight BIM models that can be used by different applications for various purposes (e.g. Autodesk for design review, Navisworks for scheduling, Innovaya for visual estimating, etc.). This study suggests the integration of design and analysis tools by means of managing all building data in one shared repository accessible to multiple domains in the AEC industry (Eastman, 1999; Eastman et al., 2008; authors, 2010). Our approach aims at providing an integrated platform that incorporates a quantity take off extraction method from IFC models, a cost analysis model, and a comprehensive cost reporting scheme, using the Solibri Model Checker (SMC) development environment. Approach As part of the effort to improve the performance of federal buildings, GSA evaluates concept design alternatives based on their compliance with specific requirements, including cost analysis. Two basic challenges emerge in the process of automating cost analysis for BIM models: 1) At this early concept design stage, only minimal information is available to produce a reliable analysis, such as space names and areas, and building gross area, 2) design alternatives share a lot of programmatic requirements such as location, functional spaces and other data. It is thus crucial to integrate other factors that contribute to substantial cost differences such as perimeter, and exterior wall and roof areas. These are extracted from BIM models using IFC data and input through XML into the Parametric Cost Engineering System (PACES, 2010) software to generate cost analysis reports. PACES uses this limited dataset at a conceptual stage and RSMeans (2010) data to infer cost assemblies at different levels of detail. Functionalities Cost model import module The cost model import module has three main functionalities: generating the input dataset necessary for the cost model, performing a semantic mapping between building type specific names and name aggregation structures in PACES known as functional space areas (FSAs), and managing cost data external to the BIM model, such as location and construction duration. The module computes building data such as footprint, gross area, perimeter, external wall and roof area and building space areas. This data is generated through SMC in the form of an XML file and imported into PACES. Reporting module The reporting module uses the cost report generated by PACES to develop a comprehensive report in the form of an excel spreadsheet. This report consists of a systems-elemental estimate that shows the main systems of the building in terms of UniFormat categories, escalation, markups, overhead and conditions, a UniFormat Level III report, and a cost breakdown that provides a summary of material, equipment, labor and total costs. Building parameters are integrated in the report to provide insight on the variations among design alternatives.
keywords building information modeling, interoperability, cost analysis, IFC
series CAAD Futures
email sherif.morad@gatech.edu
last changed 2012/02/11 18:21

_id bbc9
id bbc9
authors Aeck, Richard
year 2008
title Turnstijl Houses & Cannoli Framing
source VDM Verlag Dr. Muller Aktiengesellschaft Co. KG, Germany

ISBN: 3639078470 ISBN-13: 9783639078473

summary This work presumes that integrating modeling tools and digital fabrication technology into architectural practice will transform how we build the detached house. Single-family houses come in all shapes and sizes, and in doing so, imply variation as well in certain materials, methods, and lighter classes of structure. Ultimately, houses are extensions, if not expressions, of those dwelling within, yet our attempts to produce appealing manufactured houses have prioritized standardization over variation and fall short of this ideal. Rather than considering new offerings born of the flexibility and precision afforded by digital production, sadly, today’s homebuilders are busy using our advancing fabrication technology to hasten the production of yesterday’s home. In response to such observations, and drawing upon meta-themes (i.e., blending and transition) present in contemporary design, this study proposes a hybrid SIP/Lam framing system and a corresponding family of houses. The development of the Cannoli Framing System (CFS) through 3D and physical models culminates in the machining and testing of full-scale prototypes. Three demonstrations, branded the Turnstijl Houses, are generated via a phased process where their schema, structure, and system geometry are personalized at their conception. This work pursues the variation of type and explores the connection between type and production methodology. Additional questions are also raised and addressed, such as how is a categorical notion like type defined, affected, and even “bred”?
keywords Digital Manufacturing, Type, Typology, CNC, SIP, SIPs, Foam, PreFab, Prefabrication, Framing, Manufactured House, Modular, Packaged House, Digital, Plywood, Methodology
series thesis:MSc
type normal paper
email raeck@branchoff.net
more http://branchoff.net
last changed 2010/11/16 07:29

_id ijac20086405
id ijac20086405
authors Ahlquist, Sean; Fleischmann, Moritz
year 2008
title Elemental Methods for Integrated Architectures: Experimentation with Design Processes for Cable Net Structures
source International Journal of Architectural Computing vol. 6 - no. 4, 453-475
summary Tension active systems are compelling architectural structures having an intimate connection between structural performance and the arrangement of material. The direct flow of structural forces through the material makes these systems attractive and unique from an aesthetic point of view, but they are a challenge to develop from a design and an engineering perspective. Traditional methods for solving such structural systems rely on both analog modeling techniques and the use of highly advanced engineering software. The complexity and laborious nature of both processes presents a challenge for iterating through design variations. To experiment with the spacemaking capabilities of tension active systems, it is necessary to design methods that can actively couple the digital simulation with the analog methods for building the physical structure. What we propose is a designer-authored process that digitally simulates the behaviors of tension active systems using simple geometric components related to material and structural performance, activated and varied through elemental techniques of scripting. The logics for manufacturing and assembly are to be embedded in the digital generation of form. The intention is to transform what is a highly engineered system into an architectural system where investigation is as much about the determination of space and environment as it is about the arrangement of structure and material.
series journal
last changed 2009/03/03 06:48

_id ecaade2008_084
id ecaade2008_084
authors Alaçam Aslan, Sema; Çagdas, Gülen
year 2008
title An Interface Proposal for Collaborative Architectural Design Process
source Architecture in Computro [26th eCAADe Conference Proceedings / ISBN 978-0-9541183-7-2] Antwerpen (Belgium) 17-20 September 2008, pp. 319-324
summary The aim of this paper is to explore how new technological opportunities affect approaches of designers during collaborative architectural design process. Which factors affect the communication and the quality of interaction? The study is based on two phases: the data input by the designer via devices to the computer environment and the transformation of data into design product in the software by scripting addition. Input devices that are used are 3D mouse, graphic tablet as a tangible interface and implementation of second mouse besides a standard mouse and keyboard. The potential usage of these interfaces in collaborative architectural design process is discussed and proposals are developed in 3ds max scripting environment.
keywords Collaborative design, human-computer interaction, user participation in design
series eCAADe
type normal paper
email cagdas@itu.edu.tr
last changed 2008/09/09 14:18

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 24HOMELOGIN (you are user _anon_106783 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002