CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 539

_id ecaade2011_022
id ecaade2011_022
authors Achten, Henri
year 2011
title Degrees of Interaction: Towards a Classification
source RESPECTING FRAGILE PLACES [29th eCAADe Conference Proceedings / ISBN 978-9-4912070-1-3], University of Ljubljana, Faculty of Architecture (Slovenia) 21-24 September 2011, pp.565-572
wos WOS:000335665500065
summary In architecture various approaches have been developed do deal with changing demands on the building. The most recent development is interactive architecture. In this paper we aim to outline what interactive architecture is. First we define the type of performance behavior that an interactive building or environment has. Following, we consider the relation between the system and the user. We derive four types of relations, characterized as “perfect butler,” “partner,” “environmental,” and “wizard.” Interactive systems are composed of sensors, controllers, actuators, and materials. Various degrees of interactivity can be achieved with such systems, ranging from passive, reactive, autonomous, to agent systems. Complete with earlier discussion of design methods this provides the range of aspects that should be considered when designing interactive architecture.
keywords Interactive architecture; Human-Computer interaction; design theory
series eCAADe
email achten@fa.cvut.cz
last changed 2016/05/16 09:08

_id ecaaderis2018_103
id ecaaderis2018_103
authors Davidová, Marie and Prokop, Šimon
year 2018
title TreeHugger - The Eco-Systemic Prototypical Urban Intervention
source Odysseas Kontovourkis (ed.), Sustainable Computational Workflows [6th eCAADe Regional International Workshop Proceedings / ISBN 9789491207143], Department of Architecture, University of Cyprus, Nicosia, Cyprus, 24-25 May 2018, pp. 75-84
keywords The paper discusses co-design, development, production, application of TreeHugger (see Figure 1). The co-design among community and trans-disciplinary participants with different expertise required scope of media mix, switching between analogue, digital and back again. This involves different degrees of physical and digital 'GIGA-Mapping' (Sevaldson, 2011, 2015), 'Grasshopper3d' (Davidson, 2017) scripting and mix of digital and analogue fabrication to address the real life world. The critical participation of this 'Time-Based Design' (Sevaldson, 2004, 2005) process is the interaction of the prototype with eco-systemic agency of the adjacent environment - the eco-systemic performance. The TreeHugger is a responsive solid wood insect hotel, generating habitats and edible landscaping (Creasy, 2004) on bio-tope in city centre of Prague. To extend the impact, the code was uploaded for communities to download, local-specifically edit and apply worldwide. Thus, the fusion of discussed processes is multi-scaled and multi-layered, utilised in emerging design field: Systemic Approach to Architectural Performance.
series eCAADe
email marie.davidova@gmail.com
last changed 2018/05/29 12:33

_id ijac20109301
id ijac20109301
authors Biloria, Nimish
year 2011
title InfoMatters, a multi-agent systems approach for generating performative architectural formations
source International Journal of Architectural Computing vol. 9 - no. 3, 205-222
summary The research paper exemplifies upon a computationally intensive inter-disciplinary research driven design investigation into spatializing the relationship between digital information and physical matter. Focusing on the development of architectural scale urban inserts, the design-research work operates on the intersection of information technology, environmental design, architecture, and computer aided manufacturing domains.The research framework revolves around developing a seamless integration of the aforementioned disciplines in order to establish iterative simulation driven methodologies for generating bottom-up sustainable architectural formations. This is achieved by establishing parametrically driven relational linkages between differential data sets (environmental, social, topological, material etc), which formulate the context (both global and local) within which the proposed project has to be designed. A selforganizing multi-agent system based simulation methodology for generating resultant spatial formations, in time, based on the impacts of the parametric relationships between the aforementioned data sets is eventually embarked upon. This implies, understanding the site as a dynamic information field within which interdependent ecology of agents (representing typology of people, program, structure, speed, desired social interaction etc) with multi-level relational affinities amongst each other as well as the dynamic urban information field. The resultant self-organized multi-agent formations are iteratively mined for identifying logical three-dimensional structural patterns or subjected to programmatic and environmental need driven additional layer of structural simulation with pre-embedded material restraints. An optimized system of multi-performative components that not only populates but also serves as an integrated structural + skin system of the results obtained from the agent based simulations (based upon the degree of inclusion/exclusion of parameters such as the amount of light, sound, wind etc) is subsequently generated. These experimental projects attained the status of self-evolving ecologies of multi-dimensional agents with embodied behavioural profiles, thus providing engaged, highly interdependent design by simulation outputs. The outputs showcase a dynamic system's driven approach towards sustainable design by stressing upon the idea of cohesively binding information and material systems from the very beginning of the design process. Such approaches help in reducing post-optimization of built form and consequently allow for rational understanding of performance criteria and its impact on formal articulations throughout the design process.
series journal
last changed 2011/12/29 14:34

_id ecaade2011_019
id ecaade2011_019
authors Bourdakis, Vassilis
year 2011
title Interactive Spatial Design course analysis: 10 years, 150 projects
source RESPECTING FRAGILE PLACES [29th eCAADe Conference Proceedings / ISBN 978-9-4912070-1-3], University of Ljubljana, Faculty of Architecture (Slovenia) 21-24 September 2011, pp.647-652
wos WOS:000335665500075
summary The paper is giving an overview and analysis of an undergraduate, sixth semester, compulsory course titled “Virtual Reality: Interactive Spatial Design” at the department of Architecture, School of Engineering, University of Thessaly, Volos, Greece. It is one of the very few courses on designing digital/synthetic and interactive space_and not merely utilising Virtual Reality (VR) technologies for architectural visualisations_in architectural curricula. The aim of this paper is to primarily draw on a ten year experience on teaching the course and to open up a discussion on the implications of such digital design courses and address emerging problems. This is achieved through a reflection on the teaching process (interaction as design process, curriculum and attained goals) and an analysis and genre classification of the 150 submitted projects.
keywords Studio teaching; interaction; virtual environments; digital design
series eCAADe
email v.bourdakis@uth.gr
last changed 2016/05/16 09:08

_id cf2011_p019
id cf2011_p019
authors Haeusler, Matthias Hank; Beilharz Kirsty
year 2011
title Architecture = Computer‚ from Computational to Computing Environments
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 217-232.
summary Drawing on architecture, urban digital media, engineering, IT and interaction design, the research presented in this paper outlines a possible shift from architecture designed through computation (any type of process, algorithm or measurement done in a computational matter) towards architecture capable of computing (developing, using and improving computer technology, computer hardware and software as a space-defining element). The research is driven by recent developments in four fields, as follows: (a) Architecture in its recent development has shifted from a planar box, as was the ideal in the modernist movement, towards complex and non-standard forms. (b) The design concepts of non-standard surfaces have been adopted into media facades and media architecture by liberating the pixel from its planar position on a screen [1]. (c) Advancements in pervasive computing applications are now able both to receive information from the environment in which they are used and to detect other devices that enter this environment [2]. (d) Developments in advanced autonomous systems such as Human Computer Interaction (HCI) or Human Robot Interaction (HRI), have produced intelligent systems capable of observing human cues and using these cues as the basis for intelligent decision-making [3]. Media fa_ßade developments work in the direction of the above-mentioned four fields, but often come with limitations in architectural integration; they need additional components to interact with their environment and their interactions are both often limited to visual interactions and require the user to act first. The researched system, Polymedia Pixel [4] discussed in this paper, can overcome these limitations and fulfil the need for a space-defining material capable of computing, thus enabling a shift from architecture designed by computation towards architecture capable of active computing. The Polymedia Pixel architecture merges digital technology with ubiquitous computing. This allows the built environment and its relation with digital technology to develop from (a) architecture being represented by computer to (b) computation being used to develop architecture and then further to where (c) architecture and the space-defining objects have computing attributes. Hence the study presented aims to consider and answer this key question: ‚ÄòWhen building components with computing capacity can define space and function as a computer at the same time, what are the constraints for the building components and what are the possible advantages for the built environment?‚Äô The conceptual framework, design and methods used in this research combine three fields: (a) hardware (architecture and design, electronic engineering) (b) software (content design and IT) and (c) interaction design (HCI and HRI). Architecture and urban design determinates the field of application. Media architecture and computer science provide the technological foundation, while the field of interaction design defines the methodology to link space and computing [5]. The conceptual starting point is to rethink the application of computers in architecture and, if architecture is capable of computing, what kind of methodology and structure would find an answer to the above core research question, and what are the implications of the question itself? The case study discusses opportunities for applying the Polymedia Pixel as an architectural component by testing it on: (a) constraint testing ‚Äì applying computational design methodologies to design space (b) singular testing - discussing the advantages for an individual building, and (c) plural testing ‚Äì investigating the potential for an urban context. The research aims to contribute to the field of knowledge through presenting first steps of a System < - > System mode where buildings can possibly watch and monitor each other, additional to the four primary interactive modes of operation. This investigation, its proposed hypothesis, methodology, implications, significance and evaluation are presented in the paper.
keywords media architecture, computational environments, ubiquitous computing, interaction design, computer science
series CAAD Futures
email matthias.haeusler@uts.edu.au
last changed 2012/02/11 18:21

_id cf2011_p027
id cf2011_p027
authors Herssens, Jasmien; Heylighen Ann
year 2011
title A Framework of Haptic Design Parameters for Architects: Sensory Paradox Between Content and Representation
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 685-700.
summary Architects—like other designers—tend to think, know and work in a visual way. In design research, this way of knowing and working is highly valued as paramount to design expertise (Cross 1982, 2006). In case of architecture, however, it is not only a particular strength, but may as well be regarded as a serious weakness. The absence of non-visual features in traditional architectural spatial representations indicates how these are disregarded as important elements in conceiving space (Dischinger 2006). This bias towards vision, and the suppression of other senses—in the way architecture is conceived, taught and critiqued—results in a disappearance of sensory qualities (Pallasmaa 2005). Nevertheless, if architects design with more attention to non visual senses, they are able to contribute to more inclusive environments. Indeed if an environment offers a range of sensory triggers, people with different sensory capacities are able to navigate and enjoy it. Rather than implementing as many sensory triggers as possible, the intention is to make buildings and spaces accessible and enjoyable for more people, in line with the objective of inclusive design (Clarkson et al. 2007), also called Design for All or Universal Design (Ostroff 2001). Within this overall objective, the aim of our study is to develop haptic design parameters that support architects during design in paying more attention to the role of haptics, i.e. the sense of touch, in the built environment by informing them about the haptic implications of their design decisions. In the context of our study, haptic design parameters are defined as variables that can be decided upon by designers throughout the design process, and the value of which determines the haptic characteristics of the resulting design. These characteristics are based on the expertise of people who are congenitally blind, as they are more attentive to non visual information, and of professional caregivers working with them. The parameters do not intend to be prescriptive, nor to impose a particular method. Instead they seek to facilitate a more inclusive design attitude by informing designers and helping them to think differently. As the insights from the empirical studies with people born blind and caregivers have been reported elsewhere (Authors 2010), this paper starts by outlining the haptic design parameters resulting from them. Following the classification of haptics into active, dynamic and passive touch, the built environment unfolds into surfaces that can act as “movement”, “guiding” and/or “rest” plane. Furthermore design techniques are suggested to check the haptic qualities during the design process. Subsequently, the paper reports on a focus group interview/workshop with professional architects to assess the usability of the haptic design parameters for design practice. The architects were then asked to try out the parameters in the context of a concrete design project. The reactions suggest that the participating architects immediately picked up the underlying idea of the parameters, and recognized their relevance in relation to the design project at stake, but that their representation confronts us with a sensory paradox: although the parameters question the impact of the visual in architectural design, they are meant to be used by designers, who are used to think, know and work in a visual way.
keywords blindness, design parameters, haptics, inclusive design, vision
series CAAD Futures
email jherssens@gmail.com
last changed 2012/02/11 18:21

_id cf2011_p016
id cf2011_p016
authors Merrick, Kathryn; Gu Ning
year 2011
title Supporting Collective Intelligence for Design in Virtual Worlds: A Case Study of the Lego Universe
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 637-652.
summary Virtual worlds are multi-faceted technologies. Facets of virtual worlds include graphical simulation tools, communication, design and modelling tools, artificial intelligence, network structure, persistent object-oriented infrastructure, economy, governance and user presence and interaction. Recent studies (Merrick et al., 2010) and applications (Rosenman et al., 2006; Maher et al., 2006) have shown that the combination of design, modelling and communication tools, and artificial intelligence in virtual worlds makes them suitable platforms for supporting collaborative design, including human-human collaboration and human-computer co-creativity. Virtual worlds are also coming to be recognised as a platform for collective intelligence (Levy, 1997), a form of group intelligence that emerges from collaboration and competition among large numbers of individuals. Because of the close relationship between design, communication and virtual world technologies, there appears a strong possibility of using virtual worlds to harness collective intelligence for supporting upcoming “design challenges on a much larger scale as we become an increasingly global and technological society” (Maher et al, 2010), beyond the current support for small-scale collaborative design teams. Collaborative design is relatively well studied and is characterised by small-scale, carefully structured design teams, usually comprising design professionals with a good understanding of the design task at hand. All team members are generally motivated and have the skills required to structure the shared solution space and to complete the design task. In contrast, collective design (Maher et al, 2010) is characterised by a very large number of participants ranging from professional designers to design novices, who may need to be motivated to participate, whose contributions may not be directly utilised for design purposes, and who may need to learn some or all of the skills required to complete the task. Thus the facets of virtual worlds required to support collective design differ from those required to support collaborative design. Specifically, in addition to design, communication and artificial intelligence tools, various interpretive, mapping and educational tools together with appropriate motivational and reward systems may be required to inform, teach and motivate virtual world users to contribute and direct their inputs to desired design purposes. Many of these world facets are well understood by computer game developers, as level systems, quests or plot and achievement/reward systems. This suggests the possibility of drawing on or adapting computer gaming technologies as a basis for harnessing collective intelligence in design. Existing virtual worlds that permit open-ended design – such as Second Life and There – are not specifically game worlds as they do not have extensive level, quest and reward systems in the same way as game worlds like World of Warcraft or Ultima Online. As such, while Second Life and There demonstrate emergent design, they do not have the game-specific facets that focus users towards solving specific problems required for harnessing collective intelligence. However, a new massively multiplayer virtual world is soon to be released that combines open-ended design tools with levels, quests and achievement systems. This world is called Lego Universe (www.legouniverse.com). This paper presents technology spaces for the facets of virtual worlds that can contribute to the support of collective intelligence in design, including design and modelling tools, communication tools, artificial intelligence, level system, motivation, governance and other related facets. We discuss how these facets support the design, communication, motivational and educational requirements of collective intelligence applications. The paper concludes with a case study of Lego Universe, with reference to the technology spaces defined above. We evaluate the potential of this or similar tools to move design beyond the individual and small-scale design teams to harness large-scale collective intelligence. We also consider the types of design tasks that might best be addressed in this manner.
keywords collective intelligence, collective design, virtual worlds, computer games
series CAAD Futures
email k.merrick@adfa.edu.au
last changed 2012/02/11 18:21

_id cf2011_p093
id cf2011_p093
authors Nguyen, Thi Lan Truc; Tan Beng Kiang
year 2011
title Understanding Shared Space for Informal Interaction among Geographically Distributed Teams
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 41-54.
summary In a design project, much creative work is done in teams, thus requires spaces for collaborative works such as conference rooms, project rooms and chill-out areas. These spaces are designed to provide an atmosphere conducive to discussion and communication ranging from formal meetings to informal communication. According to Kraut et al (E.Kraut et al., 1990), informal communication is an important factor for the success of collaboration and is defined as “conversations take place at the time, with the participants, and about the topics at hand. It often occurs spontaneously by chance and in face-to-face manner. As shown in many research, much of good and creative ideas originate from impromptu meeting rather than in a formal meeting (Grajewski, 1993, A.Isaacs et al., 1997). Therefore, the places for informal communication are taken into account in workplace design and scattered throughout the building in order to stimulate face-to-face interaction, especially serendipitous communication among different groups across disciplines such as engineering, technology, design and so forth. Nowadays, team members of a project are not confined to people working in one location but are spread widely with geographically distributed collaborations. Being separated by long physical distance, informal interaction by chance is impossible since people are not co-located. In order to maintain the benefit of informal interaction in collaborative works, research endeavor has developed a variety ways to shorten the physical distance and bring people together in one shared space. Technologies to support informal interaction at a distance include video-based technologies, virtual reality technologies, location-based technologies and ubiquitous technologies. These technologies facilitate people to stay aware of other’s availability in distributed environment and to socialize and interact in a multi-users virtual environment. Each type of applications supports informal interaction through the employed technology characteristics. One of the conditions for promoting frequent and impromptu face-to-face communication is being co-located in one space in which the spatial settings play as catalyst to increase the likelihood for frequent encounter. Therefore, this paper analyses the degree to which sense of shared space is supported by these technical approaches. This analysis helps to identify the trade-off features of each shared space technology and its current problems. A taxonomy of shared space is introduced based on three types of shared space technologies for supporting informal interaction. These types are named as shared physical environments, collaborative virtual environments and mixed reality environments and are ordered increasingly towards the reality of sense of shared space. Based on the problem learnt from other technical approaches and the nature of informal interaction, this paper proposes physical-virtual shared space for supporting intended and opportunistic informal interaction. The shared space will be created by augmenting a 3D collaborative virtual environment (CVE) with real world scene at the virtual world side; and blending the CVE scene to the physical settings at the real world side. Given this, the two spaces are merged into one global structure. With augmented view of the real world, geographically distributed co-workers who populate the 3D CVE are facilitated to encounter and interact with their real world counterparts in a meaningful and natural manner.
keywords shared space, collaborative virtual environment, informal interaction, intended interaction, opportunistic interaction
series CAAD Futures
email g0800518@nus.edu.sg
last changed 2012/02/11 18:21

_id acadia11_152
id acadia11_152
authors Rael, Ronald; San Fratello, Virginia
year 2011
title Developing Concrete Polymer Building Components for 3D Printing
source ACADIA 11: Integration through Computation [Proceedings of the 31st Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA)] [ISBN 978-1-6136-4595-6] Banff (Alberta) 13-16 October, 2011, pp. 152-157
summary The creation of building components that can be seen as sustainable, inexpensive, stronger, recyclable, customizable and perhaps even reparable to the environment is an urgent, and critical focus of architectural research. In the U.S. alone, the construction industry produced 143.5 million tons of building-related construction and demolition debris in 2008, and buildings, in their consumption of energy produce more greenhouse gasses than automobiles or industry.Because the inherent nature of 3D printing opens new possibilities for shaping materials, the process will reshape the way we think about architectural building components. Digital materiality, a term coined by Italian and Swiss architects Fabio Gramazio and Matthias Kohler, describes materiality increasingly enriched with digital characteristics where data, material, programming and construction are interwoven (Gramazio and Kohler, 2008). The research aspires towards this classification through the use of parametric modeling tools, analytic software and quantitative and qualitative analysis. Rapid prototyping, which is the automatic construction of physical objects using additive manufacturing technology, typically employs materials intended for the immediate analysis of form, scale, and tactility. Rarely do the materials used in this process have any long-term value, nor does the process - except in rare cases with expensive metal prototyping - have the ability to create actual and sustainable working products. This research intends to alter this state of affairs by developing methods for 3D printing using concrete for the production of long-lasting performance-based components.
series ACADIA
type work in progress
email r@el.net
last changed 2011/10/06 04:05

_id sigradi2011_040
id sigradi2011_040
authors Rivera Henao, Mauricio
year 2011
title Entornos virtuales y sus conexiones entre el arte del performance y tradiciones chamánicas curativas [Virtual environments and their connections between the art of performance and shamanic healing traditions]
source SIGraDi 2011 [Proceedings of the 15th Iberoamerican Congress of Digital Graphics] Argentina - Santa Fe 16-18 November 2011, pp. 238-241
summary The article presents as a conclusion the interrelationship of the virtual environments (interaction, interface, real-virtual), art of performance and some American healing shamanic ceremonies exploring the theories and creative practices in the perspective of art and design. These aspects are approached from the dialectics between tradition and post-modernity. The article is divided in two parts: Axiom-Movement, which comments on the representation strategies defined by audiences' designs of participation towards the identification of art-interactive-healing. Esthetic ExperienceTransmission, shows the fieldwork circumstances in the structure of the own artistic work.
series SIGRADI
email mauriciorh@gmail.com
last changed 2016/03/10 08:58

_id caadria2011_031
id caadria2011_031
authors Fukuda, Tomohiro; Kensuke Kitagawa and Nobuyoshi Yabuki
year 2011
title A study of variation of normal of polygons created by point cloud data for architectural renovation field
source Proceedings of the 16th International Conference on Computer Aided Architectural Design Research in Asia / The University of Newcastle, Australia 27-29 April 2011, pp. 321-330
summary Acquiring current 3D space data of cities, buildings, and rooms rapidly and in detail has become indispensable. When the point cloud data of an object or space scanned by a 3D laser scanner is converted into polygons, it is an accumulation of small polygons. When object or space is a closed flat plane, it is necessary to merge small polygons to reduce the volume of data, and to convert them into one polygon. When an object or space is a closed flat plane, each normal vector of small polygons theoretically has the same angle. However, in practise, these angles are not the same. Therefore, the purpose of this study is to clarify the variation of the angle of a small polygon group that should become one polygon based on actual data. As a result of experimentation, no small polygons are converted by the point cloud data scanned with the 3D laser scanner even if the group of small polygons is a closed flat plane lying in the same plane. When the standard deviation of the extracted number of polygons is assumed to be less than 100, the variation of the angle of the normal vector is roughly 7 degrees.
keywords Point cloud; 3D laser scanner; physical space; virtual reality; polygon optimization
series CAADRIA
email fukuda@see.eng.osaka-u.ac.jp
last changed 2012/05/30 19:29

_id caadria2010_023
id caadria2010_023
authors Kenzari, Bechir
year 2010
title Fabricating twisted towers
source Proceedings of the 15th International Conference on Computer Aided Architectural Design Research in Asia / Hong Kong 7-10 April 2010, pp. 239-247
summary The miniature replicas of multi-billion dollar property development projects provide every year a spectacle of the vast imagination of architects and master developers at Cityscape Dubai exhibition. The technical aspect of the model-making industry component is a complex one in that it often engages the modelling of very subtle structures such as twisted towers. One illustration of these is the Infinity Tower in Dubai Marina (designed by SOM). To be completed in 2011, this 330-metre high-rise is composed of 80 floors and is intended to be the world’s tallest high-rise featuring a 90_ twist. Each floor rotates by 1.2 degrees to attain the full 90_ spiral, creating the shape of a helix. The paper discusses the physical modelling of this tower, with a description of both the digital and the constructive parts.
keywords Fabrication; models; Rhinoceros; twisted towers; Dubai
series CAADRIA
email b.kenzari@uaeu.ac.ae
last changed 2012/05/30 19:29

_id eaea2009_ohno_wada
id eaea2009_ohno_wada
authors Ohno, Ryuzo; Yohei Wada
year 2011
title Visibility of Guide Signs for Pedestrians in Motion: An Application of an Immersive Visual Simulation System
source Projecting Spaces [Proceedings of the 9th European Architectural Endoscopy Association Conference / ISBN 978-3-942411-31-8 ], pp. 107-114
summary When we visit a complex railway station or a large shopping mall, we rely on guide signs to find our destination. These are not always helpful, however, since the sheer number of signs around us may distract us from picking up the necessary information. The presence of other pedestrians also adds to the difficulty by blocking our view. In crowded situations where we cannot disturb pedestrian flow, we must moreover be able to read signs while walking and paying attention to the people ahead. With the above in mind, the present study uses an immersive visual simulation system to examine the influence of observation conditions on sign detection and recognition by pedestrians in motion. Two experiments were performed for the present study. The first examined the readable range (readability threshold) of three types of sign lettering in motion. This served to determine conditions for the second experiment as well as to test the performance of the immersive visual simulation system. The system displays wide-angle images (180 degrees both vertically and horizontally) capable of filling viewers’ peripheral vision; viewers may also gain stereoscopic vision through the use of polarizing glasses. The second experiment examined the influence of various observation conditions on sign detection and recognition while in motion. The virtual experimental space, made to resemble a concourse in a large railway station, was 15 m wide and 3.5 m high. The subjects, nine university students, were asked to detect the target that was assigned one of the eight figures while moving through the virtual space at a walking speed (1.5m/s) and to tap a keyboard at hand when the target was detected. At the moment of the subject’s response, the distance between the observation point and the target in the virtual space was recorded. The factors tested were sign layout (density, aggregation, alignment) and presence of other pedestrians. The degree of influence of a factor was determined by analyzing the detection distance for a comparison stimulus versus for a standard stimulus as well as the ratio of targets detected. The experiments revealed that the readability of figures viewed in motion may differ from when they are viewed under static conditions. The following factors were found to be relevant to sign detection and recognition while in motion: 1) density of signs (amount of visual information), 2) smoothness of eye movement from one sign to another, and 3) allocation of visual attention. Although the results were obtained in virtual experimental settings, and the absolute numerical values therefore have limited meaning, the results nonetheless empirically clarify some of the mechanisms involved in the detection and recognition of guide signs by pedestrians.
series other
more http://info.tuwien.ac.at/eaea
last changed 2011/03/04 07:45

_id acadia11_106
id acadia11_106
authors Parsons, Ronnie; Akos, Gil
year 2011
title Form Force Matter: Investigating form-active systems through analog machines and physics-based simulation
source ACADIA 11: Integration through Computation [Proceedings of the 31st Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA)] [ISBN 978-1-6136-4595-6] Banff (Alberta) 13-16 October, 2011, pp. 106-109
summary Form-active Systems offer an intuitive means of gaining direct and tangible knowledge for addressing architectural design problems with degrees of complexity typically beyond our capacity or desire to engage as designers. With these systems as a mechanism for research, we may establish a rich territory in which form, force, and matter are inherently imbricated in their conceptual domain. Furthermore, if we approach this conceptual terrain with an understanding that the elements of these systems exist along a continuum between the real and the virtual, we may incorporate methods and techniques in the form of analog machines and physics-based simulation from architecture’s peripheral fields of structural engineering, physics, and computation. This paper presents an applied research framework undertaken in a continued sequence of seminars whereby Form-active Systems are analyzed for their performative characteristics, synthesized for operative design strategies, iteratively prototyped across scales, and redeployed within the context of a multi-story installation.
series ACADIA
type work in progress
email gakos@studiomode.nu
last changed 2011/10/06 04:05

_id ecaade2011_099
id ecaade2011_099
authors Ahlquist, Sean; Menges, Achim
year 2011
title Methodological Approach for the Integration of Material Information and Performance in the Design Computation for Tension-Active Architectural Systems
source RESPECTING FRAGILE PLACES [29th eCAADe Conference Proceedings / ISBN 978-9-4912070-1-3], University of Ljubljana, Faculty of Architecture (Slovenia) 21-24 September 2011, pp.799-808
wos WOS:000335665500092
summary As computational design processes have moved from representation to simulation, the focus has shifted towards advanced integration of performance as a form defining measure. Performance, though, is often assessed purely on the level of geometry and stratified between hierarchically independent layers. When looking at tension-active membrane systems, performance is integrated across multiple levels and with only the membrane material itself, defining the structural, spatial and atmospheric qualities. The research described in this paper investigates the integrative nature of this type of lightweight structure and proposes methodologies for generating highly articulated and differentiated systems. As material is a critical component, the research focuses on a system-based approach which places priority on the inclusion of material research and parameterization into a behavior-based computational process.
keywords Material behavior; material computation; system; gestalt; tension-active system
series eCAADe
email sean.ahlquist@icd.uni-stuttgart.de
last changed 2016/05/16 09:08

_id acadia11_82
id acadia11_82
authors Ahlquist, Sean; Menges, Achim
year 2011
title Behavior-based Computational Design Methodologies: Integrative processes for force defined material structures
source ACADIA 11: Integration through Computation [Proceedings of the 31st Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA)] [ISBN 978-1-6136-4595-6] Banff (Alberta) 13-16 October, 2011, pp. 82-89
summary With the introduction of physics-based algorithms and modeling environments, design processes have been shifting from the representation of materiality to the simulation of approximate material descriptions. Such computational processes are based upon enacting physical and material behavior, such as gravity, drag, tension, bending, and inflation, within a generative modeling environment. What is often lacking from this strategy is an overall understanding of computational design; that information of increasing value and precision is generated through the development and iterative execution of specific principles and integrative mechanisms. The value of a physics-based modeling method as an information engine is often overlooked, though, as they are primarily utilized for developing representational diagrams or static geometry – inevitably translated to function outside of the physical bounds and parameters defined with the modeling process. The definition of computational design provides a link between process and a larger approach towards architecture – an integrative behavior-based process which develops dynamic specific architectural systems interrelated in their material, spatial, and environmental nature. This paper, focusing on material integration, describes the relation of a computational design approach and the technical framework for a behavior-based integrative process. The application is in the development of complex tension-active architectural systems. The material behavior of tensile meshes and surfaces is integrated and algorithmically calibrated to allow for complex geometries to be materialized as physical systems. Ultimately, this research proposes a computational structure by which material and other sorts of spatial or structural behaviors can be activated within a generative design environment.
series ACADIA
type normal paper
email sean.ahlquist@icd.uni-stuttgart.de
last changed 2011/10/06 04:05

_id acadia12_47
id acadia12_47
authors Aish, Robert ; Fisher, Al ; Joyce, Sam ; Marsh, Andrew
year 2012
title Progress Towards Multi-Criteria Design Optimisation Using Designscript With Smart Form, Robot Structural Analysis and Ecotect Building Performance Analysis"
source ACADIA 12: Synthetic Digital Ecologies [Proceedings of the 32nd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-62407-267-3] San Francisco 18-21 October, 2012), pp. 47-56
summary Important progress towards the development of a system that enables multi-criteria design optimisation has recently been demonstrated during a research collaboration between Autodesk’s DesignScript development team, the University of Bath and the engineering consultancy Buro Happold. This involved integrating aspects of the Robot Structural Analysis application, aspects of the Ecotect building performance application and a specialist form finding solver called SMART Form (developed by Buro Happold) with DesignScript to create a single computation environment. This environment is intended for the generation and evaluation of building designs against both structural and building performance criteria, with the aim of expediently supporting computational optimisation and decision making processes that integrate across multiple design and engineering disciplines. A framework was developed to enable the integration of modeling environments with analysis and process control, based on the authors’ case studies and experience of applied performance driven design in practice. This more generalised approach (implemented in DesignScript) enables different designers and engineers to selectively configure geometry definition, form finding, analysis and simulation tools in an open-ended system without enforcing any predefined workflows or anticipating specific design strategies and allows for a full range of optimisation and decision making processes to be explored. This system has been demonstrated to practitioners during the Design Modeling Symposium, Berlin in 2011 and feedback from this has suggested further development.
keywords Design Optimisation , Scripting , Form Finding , Structural Analysis , Building Performance
series ACADIA
type normal paper
email robert.aish@autodesk.com
last changed 2013/01/09 10:06

_id sigradi2011_264
id sigradi2011_264
authors Araneda, Claudio
year 2011
title Hacia un Estudio del Protofenómeno Urbano: Rudimentos Analíticos para una Aproximación Fenoménica al Estudio de la Percepción de Seres Humanos en el Espacio Urbano [Towards a Study of the Urban Protophenomenon: Analytical Rudiments for a Phenomenological Approximation to the Study of the Perception of Human Beings in Urban Space]
source SIGraDi 2011 [Proceedings of the 15th Iberoamerican Congress of Digital Graphics] Argentina - Santa Fe 16-18 November 2011, pp. 534-537
summary This work outlines the theoretical and methodological framework for the development of analytical rudiments contributing to the registry, cartography and quantification of the urban phenomenon understood not as urban space perception but rather, as human beings perception within urban space. It argues that this approach to urban studies is part of a scarcely explored lineage within the field of urban analysis. One that, much in the same way as the widely used topological/ structural approach, reveals key quantifiable information, mainly, in terms of real or effective density and therefore, of high value for the design of micro and meso urban scales.
keywords Urban phenomenon; urban protophenomenon; phenomenology, urban analysis, space syntax
series SIGRADI
email araneda@aaschool.ac.uk
last changed 2016/03/10 08:47

_id sigradi2011_290
id sigradi2011_290
authors Azevedo de Oliveira, Fabiana Mabel
year 2011
title Redes sociotécnicas: a concepção de uma interface [Sociotechnical network: design of an interface]
source SIGraDi 2011 [Proceedings of the 15th Iberoamerican Congress of Digital Graphics] Argentina - Santa Fe 16-18 November 2011, pp. 568-570
summary This paper aims to examine the forms of representation of the processes of creation of Web interfaces for platforms. Its origin is associated with a proposal that understands the new communications technologies, specifically the Internet, and the possibility of formation of a sociotechnical network, as a tool to expand the ways of social interaction (Egler, 2007). Increasing access to information and communication, making the process more open, redefining the relationships and social exchanges, and allowing its mediation by digital processes.
series SIGRADI
email fabianamabel@ig.com.br
last changed 2016/03/10 08:47

_id cf2011_p170
id cf2011_p170
authors Barros, Mário; Duarte José, Chaparro Bruno
year 2011
title Thonet Chairs Design Grammar: a Step Towards the Mass Customization of Furniture
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 181-200.
summary The paper presents the first phase of research currently under development that is focused on encoding Thonet design style into a generative design system using a shape grammar. The ultimate goal of the work is the design and production of customizable chairs using computer assisted tools, establishing a feasible practical model of the paradigm of mass customization (Davis, 1987). The current research step encompasses the following three steps: (1) codification of the rules describing Thonet design style into a shape grammar; (2) implementing the grammar into a computer tool as parametric design; and (3) rapid prototyping of customized chair designs within the style. Future phases will address the transformation of the Thonet’s grammar to create a new style and the production of real chair designs in this style using computer aided manufacturing. Beginning in the 1830’s, Austrian furniture designer Michael Thonet began experimenting with forming steam beech, in order to produce lighter furniture using fewer components, when compared with the standards of the time. Using the same construction principles and standardized elements, Thonet produced different chairs designs with a strong formal resemblance, creating his own design language. The kit assembly principle, the reduced number of elements, industrial efficiency, and the modular approach to furniture design as a system of interchangeable elements that may be used to assemble different objects enable him to become a pioneer of mass production (Noblet, 1993). The most paradigmatic example of the described vision of furniture design is the chair No. 14 produced in 1858, composed of six structural elements. Due to its simplicity, lightness, ability to be stored in flat and cubic packaging for individual of collective transportation, respectively, No. 14 became one of the most sold chairs worldwide, and it is still in production nowadays. Iconic examples of mass production are formally studied to provide insights to mass customization studies. The study of the shape grammar for the generation of Thonet chairs aimed to ensure rules that would make possible the reproduction of the selected corpus, as well as allow for the generation of new chairs within the developed grammar. Due to the wide variety of Thonet chairs, six chairs were randomly chosen to infer the grammar and then this was fine tuned by checking whether it could account for the generation of other designs not in the original corpus. Shape grammars (Stiny and Gips, 1972) have been used with sucesss both in the analysis as in the synthesis of designs at different scales, from product design to building and urban design. In particular, the use of shape grammars has been efficient in the characterization of objects’ styles and in the generation of new designs within the analyzed style, and it makes design rules amenable to computers implementation (Duarte, 2005). The literature includes one other example of a grammar for chair design by Knight (1980). In the second step of the current research phase, the outlined shape grammar was implemented into a computer program, to assist the designer in conceiving and producing customized chairs using a digital design process. This implementation was developed in Catia by converting the grammar into an equivalent parametric design model. In the third phase, physical models of existing and new chair designs were produced using rapid prototyping. The paper describes the grammar, its computer implementation as a parametric model, and the rapid prototyping of physical models. The generative potential of the proposed digital process is discussed in the context of enabling the mass customization of furniture. The role of the furniture designer in the new paradigm and ideas for further work also are discussed.
keywords Thonet; furniture design; chair; digital design process; parametric design; shape grammar
series CAAD Futures
email m.barros@ipt.pt
last changed 2012/02/11 18:21

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 26HOMELOGIN (you are user _anon_72928 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002