CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 590

_id acadia16_34
id acadia16_34
authors Johnson, Jason S.; Parker, Matthew
year 2016
title Architectural Heat Maps: A Workflow for Synthesizing Data
source ACADIA // 2016: POSTHUMAN FRONTIERS: Data, Designers, and Cognitive Machines [Proceedings of the 36th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-77095-5] Ann Arbor 27-29 October, 2016, pp. 34-33
summary Over the last 5 years, large-scale ‘data dumps’ of architectural production have been made available online through project-specific websites (mainly competitions) and architectural aggregation/dissemination sites like Architizer, Suckerpunch, and Archinect. This reinforces the broader context of Ubiquitous Simultaneity, in which large amounts of data are continuously updated and easily accessed through a dizzying array of mobile devices. This condition is being exploited by sports leagues and financial speculators through the development of tools that collect, visualize, and analyze historical data for the purpose of producing speculative predictive simulations that could lead to strategies for enhanced performance. We explore the development of a workflow for deploying computer vision, SIFT algorithms, image aggregation, and heteromorphic deformation as a design strategy. These techniques have all been developed separately for various applications and here we combine them in such a way as to allow for the embedding of the historical and speculative artifacts of architectural production into newly formed three-dimensional architectural bodies. This work builds on past research, which resulted in a more two-dimensional image-based mapping and translation process found in existing imaging protocols for projects like Google Earth, and transitions towards the production of data-rich formal assemblies. Outliers and concentrations of visual data are exploited as a means to encourage innovation within the production of architecture.
keywords historical and speculative data, generative design, computer vision, ubiquitous simultaneity, sensate systems
series ACADIA
type paper
email jason.johnson@ucalgary.ca
last changed 2016/10/24 11:12

_id caadria2016_363
id caadria2016_363
authors Lee, Alexander; Suleiman Alhadidi and M. Hank Haeusler
year 2016
title Developing a Workflow for Daylight Simulation
source Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016) / Melbourne 30 March–2 April 2016, pp. 363-372
summary Daylight simulations are occasionally used as active tools in regards to local governing regulations, which are necessary for providing documentation. Simulation tools have been avoided in the past due to their barriers. Daylight simulation tools are used within documentation design stages as ‘passive tools’, however they do not have a direct impact on the architecture design decisions, as passive tools are used by engineers usually to derive material and glass speci- fications. Recent developments within an online community have pro- vided designers with access to daylight simulation tools within a de- sign platform accessible data can be modified and represented with local governing codes to provide designers with relevant information. The paper aimed to develop an active daylight simulation tool within a design platform. Data is filtered with the Green Star benchmarks to export visual information as well as a voxel matrix instead of 2D lu- minance maps. This paper outlines a workflow of the simulation tool used to evaluate daylight performance of a selected building as a case study in real time. The paper also details potential problems and justi- fied suggestions derived from the analysis for the building to reach the requirements within the Green Star Multi Unit Residential.
keywords Data-driven design; computation environmental design; daylight simulation; Green Star
series CAADRIA
email alexandertuksunlee@gmail.com
last changed 2016/03/11 09:21

_id caadria2016_777
id caadria2016_777
authors Aditra, Rakhmat F. and Andry Widyowijatnoko
year 2016
title Combination of mass customisation and conventional construction: A case study of geodesic bamboo dome
source Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016) / Melbourne 30 March–2 April 2016, pp. 777-786
summary With the development of advance fabrication, several digi- tal fabrication approaches have been developed. These approaches en- able better form exploration than the conventional manufacturing pro- cess. But, the built examples mostly rely on advance machinery which was not familiar or available in developed country where construction workers are still abundant. Meanwhile, much knowledge gathers in the field practice. This research is aimed to explore an alternative con- struction workflow and method with the combination of mass custom- ization and conventional construction method and to propose the structure system that emphasized this alternative workflow and meth- od. Lattice structure was proposed. The conventional construction method was used in the struts production and mass customization method, laser cutting, and was used for connection production. The algorithmic process was used mainly for data mining, details design, and component production. The backtracking was needed to be pre- dicted and addressed previously. Considerations that will be needed to be tested by further example are on the transition from the digital pro- cess to the manual process. Next research could be for analysing the other engineering aspect for this prototype and suggesting other struc- tural system with more optimal combination of conventional construc- tion and mass customization.
keywords Mass customisation; algorithmic design; digital fabrication; geodesic dome; lattice structure
series CAADRIA
email rakhmat@ar.itb.ac.id
last changed 2016/03/11 09:21

_id acadia16_106
id acadia16_106
authors Das, Subhajit; Day, Colin; Hauck, John; Haymaker, John; Davis, Diana
year 2016
title Space Plan Generator: Rapid Generationn & Evaluation of Floor Plan Design Options to Inform Decision Making
source ACADIA // 2016: POSTHUMAN FRONTIERS: Data, Designers, and Cognitive Machines [Proceedings of the 36th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-77095-5] Ann Arbor 27-29 October, 2016, pp. 106-115
summary Design exploration in architectural space planning is often constrained by tight deadlines and a need to apply necessary expertise at the right time. We hypothesize that a system that can computationally generate vast numbers of design options, respect project constraints, and analyze for client goals, can assist the design team and client to make better decisions. This paper explains a research venture built from insights into space planning from senior planners, architects, and experts in the field, coupled with algorithms for evolutionary systems and computational geometry, to develop an automated computational framework that enables rapid generation and analysis of space plan layouts. The system described below automatically generates hundreds of design options from inputs typically provided by an architect, including a site outline and program document with desired spaces, areas, quantities, and adjacencies to be satisfied. We envision that this workflow can clarify project goals early in the design process, save time, enable better resource allocation, and assist key stakeholders to make informed decisions and deliver better designs. Further, the system is tested on a case study healthcare design project with set goals and objectives.
keywords healthcare spaces, facility layout design, design optimization, decision making, binary data tree structure, generative design, automated space plans
series ACADIA
type paper
email das@gatech.edu
last changed 2016/10/24 11:12

_id acadia16_206
id acadia16_206
authors Devadass, Pradeep; Dailami, Farid; Mollica, Zachary; Self, Martin
year 2016
title Robotic Fabrication of Non-Standard Material
source ACADIA // 2016: POSTHUMAN FRONTIERS: Data, Designers, and Cognitive Machines [Proceedings of the 36th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-77095-5] Ann Arbor 27-29 October, 2016, pp
summary This paper illustrates a fabrication methodology through which the inherent form of large non-linear timber components was exploited in the Wood Chip Barn project by the students of Design + Make at the Architectural Association’s Hooke Park campus. Twenty distinct Y-shaped forks are employed with minimal machining in the construction of a structural truss for the building. Through this workflow, low-value branched sections of trees are transformed into complex and valuable building components using non-standard technologies. Computational techniques, including parametric algorithms and robotic fabrication methods, were used for execution of the project. The paper addresses the various challenges encountered while processing irregular material, as well as limitations of the robotic tools. Custom algorithms, codes, and post-processors were developed and integrated with existing software packages to compensate for drawbacks of industrial and parametric platforms. The project demonstrates and proves a new methodology for working with complex, large geometries which still results in a low cost, time- and quality-efficient process.
keywords parametric design, craft in digital communication, digital fabrication, sensate systems
series ACADIA
type paper
email pappurvsa@gmail.com
last changed 2016/10/24 11:12

_id caadria2016_229
id caadria2016_229
authors Liu, Yuezhong; Rudi Stouffs, Abel Tablada, Nyuk Hien Wong and Ji Zhang
year 2016
title Micro-scale weather data for energy performance assessment in Singapore
source Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016) / Melbourne 30 March–2 April 2016, pp. 229-238
summary Weather data plays an important role for energy perfor- mance assessment in the design of buildings and urban environments. Many researches have been carried out to generate and analyse vari- ous weather files for different simulation platforms. However, investi- gations have been lacking in the development of weather files that ac- count for urban heat island (UHI) problems. As a result of global warming and the complexity of the urban environment, the weather file for a modern city cannot be simply based on climate information from 20 years ago. The objective of this research is to demonstrate a method for creating different micro-scale typical meteorological year (TMY) weather files based on different urban texture values. This re- search includes three steps: 1) Recent years weather data is obtained. 2) Considering the UHI impact, a series of new TMY weather files are generated for different micro-scale areas in Singapore based on rele- vant urban texture variables. 3) A comparison of the results shows that there is a big difference between the new and the old TMY. The tem- perature of the new TMY is 1-2°C higher, while the solar radiation is lower than the original TMY data. Hence the new weather files will be more credible than the original TMY for energy performance simula- tion in the design process.
keywords TMY; UHI; Sandia method; energy performance
series CAADRIA
email liuyuezhong@nus.edu.sg
last changed 2016/03/11 09:21

_id ecaade2016_147
id ecaade2016_147
authors Tamke, Martin, Zwierzycki, Mateusz, Evers, Henrik Leander, Ochmann, Sebastian, Vock, Richard and Wessel, Raoul
year 2016
title Tracking Changes in Buildings over Time - Fully Automated Reconstruction and Difference Detection of 3d Scan and BIM files
source Herneoja, Aulikki; Toni Österlund and Piia Markkanen (eds.), Complexity & Simplicity - Proceedings of the 34th eCAADe Conference - Volume 2, University of Oulu, Oulu, Finland, 22-26 August 2016, pp. 643-651
summary Architectural and Engineering Communities are interested in the detection of differences between different representations of the same building. These can be the differences between the design and the as-built-state of a building, or the detection of changes that occur over time and that are documented by consecutive 3D scans. Current approaches for the detection of differences between 3D scans and 3D building models are however laborious and work only on the level of a building element. We demonstrate a novel highly automated workflow to detect differences between representations of the same building. We discuss the underlying tools and methods and the ways to communicate deviations and differences in an appropriate manner and evaluate our approach with a rich set of real world datasets.
wos WOS:000402064400065
keywords 3d scan; BIM; Machine learning; Point Clouds; Big Data
series eCAADe
email martin.tamke@kadk.dk
last changed 2017/06/28 08:46

_id acadia16_424
id acadia16_424
authors Twose, Simon; du Chatenier, Rosa
year 2016
title Experimental Material Research - Digital Chocolate
source ACADIA // 2016: POSTHUMAN FRONTIERS: Data, Designers, and Cognitive Machines [Proceedings of the 36th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-77095-5] Ann Arbor 27-29 October, 2016, pp. 424-431
summary This research investigates the aesthetics of a shared agency between humans, computation and physical material. ‘Chocolate’ is manipulated in physical and virtual space simultaneously to extract aesthetic conditions that are a sum of human and non-human relations. This is an attempt to further the knowledge of designing, giving physical and digital materials force in determining their own aesthetics. The research springs from work in speculative aesthetics, particularly N. Katherine Hayles’s OOI (object-oriented inquiry) and Graham Harman’s OOO (object-oriented ontology) and explores how these ideas impact contemporary computational architectural design. To study this, a simple material has been chosen, chocolate, and used as a vehicle to investigate the dynamics of physical and digital materials and their shared/differing ‘resistances to human manipulation’ (Pickering 1995). Digital chocolate is ‘melted’ through virtual heat, and the results printed and cast in real chocolate, to be further manipulated in real space. The resistances and feedback of physical and digital chocolate to human ‘prodding’ (Hayles 2014) are analyzed in terms of a material’s qualities and tendencies in digital space versus those in physical space. Observations from this process are used to speculate on an aesthetics where humans, computation and physical material are mutually agential. This research is a pilot for a larger study taking on more complex conditions, such as building and cities, with a view to broadening how aesthetics is understood in architectural design. The contribution of this research to the field of architectural computation is thus in areas of aesthetic speculation and human/non-human architectural authorship.
keywords object-oriented inquiry, speculative aesthetics, mutual agency, big data
series ACADIA
type paper
email rosaduchatenier@gmail.com
last changed 2016/10/24 11:12

_id caadria2016_395
id caadria2016_395
authors Ugarte, J. P. and M. Leef
year 2016
title Digital Geo-Plexus: Instagram as a tool for re-evaluating notions of proximity
source Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016) / Melbourne 30 March–2 April 2016, pp. 395-404
summary The research presented in this paper describes the develop- ment of an Instagram-based multidimensional clustering algorithm. The algorithm analyses large datasets of Instagram images to establish new metrics that qualitatively assess proximity relations in a given geographical area —i.e. negotiates multiple acceptations of proximity. Influenced by Qualitative Spatial Reasoning, Lewis Mumford’s geo- graphic plexus and Kevin Lynch’s perceptual mapping, a graphic GUI-based application has been developed to produce real-time visu- alizations —maps, network graphs, and charts— by means of brows- ing, downloading and post-processing Instagram feeds. First, the ap- plication’s functioning will be described; second, several graphic visualizations will demonstrate the capabilities of the software; third, limitations and further development will be discussed.
keywords Instagram; big data; social network
series CAADRIA
email jugarte@gsd.harvard.edu
last changed 2016/03/11 09:21

_id ascaad2016_056
id ascaad2016_056
authors Dutt, Florina; Subhajit Das
year 2016
title Geospatial Tool Evaluating Job Location Mismatch, Based on Available Workforce and Transit Options - Evaluating property location in a city using large-scale datasets
source Parametricism Vs. Materialism: Evolution of Digital Technologies for Development [8th ASCAAD Conference Proceedings ISBN 978-0-9955691-0-2] London (United Kingdom) 7-8 November 2016, pp. 557-566
summary The paper addresses the issue of spatial mismatch of jobs and the accessibility to job locations based on different age, income and industry group. Taking Atlanta as a case study, we developed a geospatial analysis tool enabling developers, the city planning bureau and the residents to identify potential sites of redevelopment with better economic development opportunities. It also aids to find potential location to live with respect to user’s choices for transit options, walkability, job location and proximity to chosen land use. We built our model on a block level in the city, imparting them a score, visualizing the data as a heat map. The metrics to compute the score included proximity to job, proximity to worker’s residence, transit availability, walkability and number of landmark elements near the site. We worked with Longitudinal Employer-Household Dynamics (LEHD) Data along with residence area characteristics (RAC) and work place area characteristic (WAC) data sets, where the total number of data-points was over 3 million. It was challenging for us to optimize computation such that the prototype performs statistical analysis and updates visualization in real time. The research further is prototyped as a web application leveraging Leaflet’s Open Street Maps API and D3 visualization plugin. The research showed that there is a high degree of spatial mismatch between home and job locations with very few jobs with driving distance within 5 -10 miles with limited transit options in Atlanta. Further, it showed that low-earning workers need to travel significantly larger distance for work compared to higher class.
series ASCAAD
email florina.design@gatech.edu
last changed 2017/05/25 11:34

_id ecaade2016_210
id ecaade2016_210
authors Abdelmohsen, Sherif, Massoud, Passaint and Elshafei, Ahmed
year 2016
title Using Tensegrity and Folding to Generate Soft Responsive Architectural Skins
source Herneoja, Aulikki; Toni Österlund and Piia Markkanen (eds.), Complexity & Simplicity - Proceedings of the 34th eCAADe Conference - Volume 1, University of Oulu, Oulu, Finland, 22-26 August 2016, pp. 529-536
summary This paper describes the process of designing a prototype for a soft responsive system for a kinetic building facade. The prototype uses lightweight materials and mechanisms to generate a building facade skin that is both soft (less dependent on hard mechanical systems) and responsive (dynamically and simultaneously adapting to spatial and environmental conditions). By combining concepts stemming from both tensegrity structures and folding mechanisms, we develop a prototype that changes dynamically to produce varying facade patterns and perforations based on sensor-network data and feedback. We use radiation sensors and shape memory alloys to control the prototype mechanism and allow for the required parametric adaptation. Based on the data from the radiation sensors, the lengths of the shape memory alloys are altered using electric wires and are parametrically linked to the input data. The transformation in the resulting overall surface is directly linked to the desired levels of daylighting and solar exposure. We conclude with directions for future research, including full scale testing, advanced simulation, and multi-objective optimization.
wos WOS:000402063700058
keywords Soft responsive systems; tensegrity; folding; kinetic facades
series eCAADe
email sherifmorad@aucegypt.edu
last changed 2017/06/28 08:46

_id ecaade2016_ws-folding
id ecaade2016_ws-folding
authors Akleman, Ergun, Kalantar, Negar and Borhani, Alireza
year 2016
title Folding The Unfoldable - A Method For Constructing Complex-Curved Geometry With Quad Edge Panels
source Herneoja, Aulikki; Toni Österlund and Piia Markkanen (eds.), Complexity & Simplicity - Proceedings of the 34th eCAADe Conference - Volume 1, University of Oulu, Oulu, Finland, 22-26 August 2016, pp. 69-72
summary This paper explains a method will be used during a workshop for constructing complex-curved geometry with quad edge panels. In this workshop, we demonstrate that quad-edge mesh data structure can efficiently be used to construct complex large shapes. With hands-on experiments, we will show a vast variety of shapes can be constructed using square, rectangular, parallelogram and extruded-line shaped panels. In addition, using a system we have recently developed to unfold polygonal mesh, we will demonstrate how desired shapes can be constructed by using laser-cut quadrilateral panels. This approach is particularly suitable to construct complicated sculptural and architectural shapes from anisotropic materials that can only be bended in one direction.
wos WOS:000402063700007
keywords Shape Modeling; Physical Construction; Complex-Curved Geometry; Digital Fabrication
series eCAADe
email kalantar@tamu.edu
last changed 2017/06/28 08:46

_id ascaad2016_047
id ascaad2016_047
authors Algeciras-Rodríguez, José
year 2016
title Trained Architectonics
source Parametricism Vs. Materialism: Evolution of Digital Technologies for Development [8th ASCAAD Conference Proceedings ISBN 978-0-9955691-0-2] London (United Kingdom) 7-8 November 2016, pp. 461-468
summary The research presented here tests the capacity of artificial-neural-network (ANN) based multi-agent systems to be implemented in architectural design processes. Artificial Intelligence algorithms allow for a new approach to design, taking advantage of its generic functioning to produce meaningful outcomes. Experimentation within this project is based on Self-Organizing Maps (SOMs) and takes advantage of its behavior in topology to produce architectural geometry. SOMs as full stochastic processes involve randomness, uncertainty and unpredictability as key features to deal with during the design process. Following this behavior, SOMs are used to transmit information, which, instead of being copied, is reproduced after a learning (training) process. Pre-existent architectural objects are taken as learning models as they have been considered masterpieces. In this context, by defining the SOM input set, masterpieces become measurement elements and can be used to set a distance to the new element position in a comparatistic space. The characteristics of masterpieces get embedded within the code and are transmitted to 3D objects. SOM produced objects from a population with shared characteristics where the masterpiece position is its probabilistic center point.
series ASCAAD
email josealgeciras@gmail.com
last changed 2017/05/25 11:33

_id acadia16_362
id acadia16_362
authors Beesley, Philip; Ilgun, Zeliha, Asya; Bouron, Giselle; Kadish, David; Prosser, Jordan; Gorbet, Rob; Kulic, Dana; Nicholas, Paul; Zwierzycki, Mateusz
year 2016
title Hybrid Sentient Canopy: An implementation and visualization of proprioreceptive curiosity-based machine learning
source ACADIA // 2016: POSTHUMAN FRONTIERS: Data, Designers, and Cognitive Machines [Proceedings of the 36th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-77095-5] Ann Arbor 27-29 October, 2016, pp. 362-371
summary This paper describes the development of a sentient canopy that interacts with human visitors by using its own internal motivation. Modular curiosity-based machine learning behaviour is supported by a highly distributed system of microprocessor hardware integrated within interlinked cellular arrays of sound, light, kinetic actuators and proprioreceptive sensors in a resilient physical scaffolding system. The curiosity-based system involves exploration by employing an expert system composed of archives of information from preceding behaviours, calculating potential behaviours together with locations and applications, executing behaviour and comparing result to prediction. Prototype architectural structures entitled Sentient Canopy and Sentient Chamber developed during 2015 and 2016 were developed to support this interactive behaviour, integrating new communications protocols and firmware, and a hybrid proprioreceptive system that configured new electronics with sound, light, and motion sensing capable of internal machine sensing and externally- oriented sensing for human interaction. Proprioreception was implemented by producing custom electronics serving photoresistors, pitch-sensing microphones, and accelerometers for motion and position, coupled to sound, light and motion-based actuators and additional infrared sensors designed for sensing of human gestures. This configuration provided the machine system with the ability to calculate and detect real-time behaviour and to compare this to models of behaviour predicted within scripted routines. Testbeds located at the Living Architecture Systems Group/Philip Beesley Architect Inc. (LASG/PBAI, Waterloo/Toronto), Centre for Information Technology (CITA, Copenhagen) National Academy of Sciences (NAS) in Washington DC are illustrated.
keywords intedisciplinary/collaborative design, intelligent environments, artificial intelligence, sensate systems
series ACADIA
type paper
email pbeesley@uwaterloo.ca
last changed 2016/10/24 11:12

_id caadria2016_383
id caadria2016_383
authors Beorkrem, C.; J. Ellinger, P. Bernstein and A. Hauck
year 2016
title Multivariate Schematic Design Tooling
source Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016) / Melbourne 30 March–2 April 2016, pp. 383-394
summary This paper will examine the results from a research collaboration between (BIM Software Manufacturer) and (School), whose problem statement focused on supporting robust interoperability by defining goals focused on multivariate conceptual design tools. The collaboration included design faculty, students and software professionals, the latter providing access to a broad range of design simulation tools either commercially available or currently in development. The tools were developed first through case studies and background research, followed by the design and implementation of novel computational methods advancing the architectural design workflow by seeking to create comparative tools which allow a designer to connect multiple data typologies in a single model. With advanced computational tools employed both as standalone resources and embedded in parametric loops, we sought to provide immediate feedback on design goals.
keywords Building information modelling; simulation and prediction; education; optimization; scripting
series CAADRIA
email cbeorkrem@uncc.edu
last changed 2016/03/11 09:21

_id acadia16_154
id acadia16_154
authors Brugnaro, Giulio; Baharlou, Ehsan; Vasey, Lauren; Menges, Achim
year 2016
title Robotic Softness: An Adaptive Robotic Fabrication Process for Woven Structures
source ACADIA // 2016: POSTHUMAN FRONTIERS: Data, Designers, and Cognitive Machines [Proceedings of the 36th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-77095-5] Ann Arbor 27-29 October, 2016, pp. 154-163
summary This paper investigates the potential of behavioral construction strategies for architectural production through the design and robotic fabrication of three-dimensional woven structures inspired by the behavioral fabrication logic used by the weaverbird during the construction of its nest. Initial research development led to the design of an adaptive robotic fabrication framework composed of an online agent-based system, a custom weaving end-effector and a coordinated sensing strategy utilizing 3D scanning.The outcome of the behavioral weaving process could not be predetermined a priori in a digital model, but rather emerged out of the negotiation among design intentions, fabrication constraints, performance criteria, material behaviors and specific site conditions. The key components of the system and their role in the fabrication process are presented both theoretically and technically, while the project serves as a case study of a robotic production method envisioned as a soft system: a flexible and adaptable framework in which the moment of design unfolds simultaneously with fabrication, informed by a constant flow of sensory information.
keywords soft systems, agent-based systems, robotic fabrication, sensate systems
series ACADIA
type paper
email giuliobrugnaro@gmail.com
last changed 2016/10/24 11:12

_id ecaade2016_027
id ecaade2016_027
authors Carl, Timo and Stepper, Frank
year 2016
title "Free Skin" Collaboration - Negotiating complex design criteria across different scales with an interdisciplinary student team
source Herneoja, Aulikki; Toni Österlund and Piia Markkanen (eds.), Complexity & Simplicity - Proceedings of the 34th eCAADe Conference - Volume 1, University of Oulu, Oulu, Finland, 22-26 August 2016, pp. 591-600
summary The complex nature of architecture requires often planning teams with specialists from multiple disciplines. Architectural education however, addresses this interdisciplinary modus operandi rarely. This paper presents the design and production process of a real world solar façade installation realized at the University of Kassel to illustrating the potentials of such an approach. Interdisciplinary teamwork allowed students not only to solve complex problems, but also to produce knowledge and to advance into design research. Student exploration resulted in a unique fabrication technique, combining tensile fabric and resin to facilitate the fabrication of multifunctional, monocoque shells; combining all necessary technical components in a single building element. This paper discusses the success of student collaboration and teaching strategies for key parts of the design process at different scales. Moreover, it highlights the importance of physical form-finding models and an analogue - digital workflow for collaborative communication. The Free Skin project offers both insight into applied use of interdisciplinary teamwork, and a proposal for incorporating such collaboration into architectural education.
wos WOS:000402063700064
keywords interdisciplinary collaboration; design-build; form-finding; reactive design; shell structures
series eCAADe
email tcarl@asl.uni-kassel.de
last changed 2017/06/28 08:46

_id ecaade2016_020
id ecaade2016_020
authors Cerovsek, Tomo and Martens, Bob
year 2016
title CumInCAD 2.0: A Redesigned Scalable Cloud Deployment - Towards higher impact with openness and novel features
source Herneoja, Aulikki; Toni Österlund and Piia Markkanen (eds.), Complexity & Simplicity - Proceedings of the 34th eCAADe Conference - Volume 1, University of Oulu, Oulu, Finland, 22-26 August 2016, pp. 485-492
summary CumInCAD is a cumulative index of publications related to 'Computer Aided Architectural Design' (CAAD). It includes bibliographic data of approximately 12K records, which were predominantly derived from CAAD-related conferences, such as ACADIA, ASCAAD, CAADRIA, eCAADe, SiGraDi and CAAD futures. A brief historical overview of almost two decades of collaboration between the University of Ljubljana and the above-mentioned CAAD-associations is provided. After years of successful operation the previous interface became gradually outdated, which called for new developments to assure continuous support to open access to scientific knowledge. In this contribution, we explain the existing status of the systems, its use, and the transition process to a cloud deployment.
wos WOS:000402063700053
keywords Open access; Cloud deployment; Bibliometrics; Google Scholar
series eCAADe
email tomo.cerovsek@gmail.com
last changed 2017/06/28 08:46

_id caadria2016_125
id caadria2016_125
authors Chen, I-Chih and June-Hao Hou
year 2016
title Design with bamboo bend: Bridging natural material and computational design
source Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016) / Melbourne 30 March–2 April 2016, pp. 125-133
summary Bamboo is a high potential alternative solution for substi- tuting industrial material with its natural characteristics, economical and environmental aspects. However, one of the biggest challenges for natural materials to be used in computational designed is the control- lability due to its unevenness nature. The other gap is the lack of ma- terial parameters that might be bridged by analysing data acquired from conventional tests. This research studied the raw bamboo strip and its natural forming from bending, by using sampling points and curvature reconstruction. The parametric models of bamboo strips were then constructed to represent its material behaviours for form prediction, material selection, and simulation in parametric design. It also serves as an assistive method for material selection when crafting with bamboo bend.
keywords Bamboo; bending; material computation; digital crafting
series CAADRIA
email inaohlala@arch.nctu.edu.tw
last changed 2016/03/11 09:21

_id acadia16_440
id acadia16_440
authors Clifford, Brandon
year 2016
title The McKnelly Megalith: A Method of Organic Modeling Feedback
source ACADIA // 2016: POSTHUMAN FRONTIERS: Data, Designers, and Cognitive Machines [Proceedings of the 36th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-77095-5] Ann Arbor 27-29 October, 2016, pp. 440-449
summary Megalithic civilizations held tremendous knowledge surrounding the deceivingly simple task of moving heavy objects. Much of this knowledge has been lost to us from the past. This paper mines, extracts, and experiments with this knowledge to test what applications and resonance it holds with contemporary digital practice. As an experiment, a sixteen-foot tall megalith is designed, computed, and constructed to walk horizontally and stand vertically with little effort. Testing this prototype raises many questions about the relationship between form and physics. In addition, it projects practical application of such reciprocity between architectural desires and the computation of an object’s center of mass. This research contributes to ongoing efforts around the integration of physics-based solvers into the design process. It goes beyond the assumption of statics as a solution in order to ask questions about what potentials mass can contribute to the assembly and erecting of architectures to come. It engages a megalithic way of thinking which requires an intimate relationship between designer and center of mass. In doing so, it questions conventional disciplinary notions of stasis and efficiency.
keywords rapid prototyping, design simulation, fabrication, computation, megalith
series ACADIA
type normal paper
email brandon@matterdesignstudio.com
more admin
last changed 2016/10/24 12:18

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 29HOMELOGIN (you are user _anon_728249 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002