CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 594

_id acadia16_382
id acadia16_382
authors Lopez, Deborah; Charbel, Hadin; Obuchi, Yusuke; Sato, Jun; Igarashi, Takeo; Takami, Yosuke; Kiuchi, Toshikatsu
year 2016
title Human Touch in Digital Fabrication
source ACADIA // 2016: POSTHUMAN FRONTIERS: Data, Designers, and Cognitive Machines [Proceedings of the 36th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-77095-5] Ann Arbor 27-29 October, 2016, pp. 382-393
summary Human capabilities in architecture-scaled fabrication have the potential of being a driving force in both design and construction processes. However, while intuitive and flexible, humans are still often seen as being relatively slow, weak, and lacking the exacting precision necessary for structurally stable large-scale outputs—thus, hands-on involvement in on-site fabrication is typically kept at a minimum. Moreover, with increasingly advanced computational tools and robots in architectural contexts, the perfection and speed of production cannot be rivaled. Yet, these methods are generally non-engaging and do not necessarily require a skilled labor workforce, bringing to question the role of the craftsman in the digital age. This paper was developed with the focus of leveraging human adaptability and tendencies in the design and fabrication process, while using computational tools as a means of support. The presented setup consists of (i) a networked scanning and application of human movements and human on-site positioning, (ii) a lightweight and fast-drying extruded composite material, (iii) a handheld “smart” tool, and (iv) a structurally optimized generative form via an iterative feedback system. By redistributing the roles and interactions of humans and machines, the hybridized method makes use of the inherently intuitive yet imprecise qualities of humans, while maximizing the precision and optimization capabilities afforded by computational tools—thus incorporating what is traditionally seen as “human error” into a dynamically engaging and evolving design and fabrication process. The interdisciplinary approach was realized through the collaboration of structural engineering, architecture, and computer science laboratories.
keywords human computer interaction and design, craft in design, tool streams and tool building, cognate streams, sensate systems
series ACADIA
type paper
email deborahlopezlobato@gmail.com
last changed 2016/10/24 11:12

_id acadia16_488
id acadia16_488
authors Derme, Tiziano; Mitterberger, Daniela; Di Tanna, Umberto
year 2016
title Growth Based Fabrication Techniques for Bacterial Cellulose: Three-Dimensional Grown Membranes and Scaffolding Design for Biological Polymers
source ACADIA // 2016: POSTHUMAN FRONTIERS: Data, Designers, and Cognitive Machines [Proceedings of the 36th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-77095-5] Ann Arbor 27-29 October, 2016, pp. 488-495
summary Self-assembling manufacturing for natural polymers is still in its infancy, despite the urgent need for alternatives to fuel-based products. Non-fuel based products, specifically bio-polymers, possess exceptional mechanical properties and biodegradability. Bacterial cellulose has proven to be a remarkably versatile bio-polymer, gaining attention in a wide variety of applied scientific applications such as electronics, biomedical devices, and tissue-engineering. In order to introduce bacterial cellulose as a building material, it is important to develop bio-fabrication methodologies linked to material-informed computational modeling and material science. This paper emphasizes the development of three-dimensionally grown bacterial cellulose (BC) membranes for large-scale applications, and introduces new manufacturing technologies that combine the fields of bio-materials science, digital fabrication, and material-informed computational modeling. This paper demonstrates a novel method for bacterial cellulose bio-synthesis as well as in-situ self-assembly fabrication and scaffolding techniques that are able to control three-dimensional shapes and material behavior of BC. Furthermore, it clarifies the factors affecting the bio-synthetic pathway of bacterial cellulose—such as bacteria, environmental conditions, nutrients, and growth medium—by altering the mechanical properties, tensile strength, and thickness of bacterial cellulose. The transformation of the bio-synthesis of bacterial cellulose into BC-based bio-composite leads to the creation of new materials with additional functionality and properties. Potential applications range from small architectural components to large structures, thus linking formation and materialization, and achieving a material with specified ranges and gradient conditions, such as hydrophobic or hydrophilic capacity, graded mechanical properties over time, material responsiveness, and biodegradability.
keywords programmable materials, material agency, biomimetics and biological design
series ACADIA
type paper
email tiziano.derme@gmail.com
last changed 2016/10/24 11:12

_id ascaad2016_004
id ascaad2016_004
authors Peteinarelis, Alexandros; Socrates Yiannoudes
year 2016
title Algorithmic Thinking in Design and Construction - Working with parametric models
source Parametricism Vs. Materialism: Evolution of Digital Technologies for Development [8th ASCAAD Conference Proceedings ISBN 978-0-9955691-0-2] London (United Kingdom) 7-8 November 2016, pp. 19-28
summary This paper examines the parametric model in algorithmic design processes, using the outcome of an educational digital design and fabrication course as a case study. In its long history, algorithmic design as a form-finding method, allowed designers to manage complex non-standard associative geometries, suggesting a shift from the digital representation of form, to its systematic representation into a parametric model through code. Rather than a style or a tool, the parametric model is best defined in mathematical terms; in practice it incorporates the organizational logic of the form and the topological associations of its parts, so that a change in its constitutive parameters will invoke a concerted update of the entire model, and, iteratively, formal and structural variations. In a series of design experiments that took place at the School of Architecture of the Technical University of Crete in the spring of 2015, we used parametric models represented into visual code, from the initial conceptual stage to fabrication. From the experience and outcome of this course, we deduced that, compared to other digital formation methods, parametric models allow the designer to constantly interact with the model through the code, producing discreet variations without losing control of the design intentions, by “searching” into a wide range (albeit finite) of virtual results. This suggested a shift in culturally embedded patterns of modernist design thinking.
series ASCAAD
email ng5ten@yahoo.com
last changed 2017/05/25 11:13

_id acadia16_174
id acadia16_174
authors Moorman, Andrew; Liu, Jingyang; Sabin, Jenny E.
year 2016
title RoboSense: Context-Dependent Robotic Design Protocols and Tools
source ACADIA // 2016: POSTHUMAN FRONTIERS: Data, Designers, and Cognitive Machines [Proceedings of the 36th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-77095-5] Ann Arbor 27-29 October, 2016, pp. 174-183
summary While nonlinear concepts are widely applied in analysis and generative design in architecture, they have not yet convincingly translated into the material realm of fabrication and construction. As the gap between digital design model, shop drawing, and fabricated result continues to diminish, we seek to learn from fabrication models and natural systems that do not separate code, geometry, pattern, material compliance, communication, and form, but rather operate within dynamic loops of feedback, reciprocity, and generative fabrication. Three distinct, but connected problems: 1) Robotic ink drawing; 2) Robotic wine pouring and object detection; and 3) Dynamically Adjusted Extrusion; were addressed to develop a toolkit including software, custom digital design tools, and hardware for robotic fabrication and user interaction in cyber-physical contexts. Our primary aim is to simplify and consolidate the multiple platforms necessary to construct feedback networks for robotic fabrication into a central and intuitive programming environment for both the advanced to novice user. Our experimentation in prototyping feedback networks for use with robotics in design practice suggests that the application of this knowledge often follows a remarkably consistent profile. By exploiting these redundancies, we developed a support toolkit of data structures and routines that provide simple integrated software for the user-friendly programming of commonly used roles and functionalities in dynamic robotic fabrication, thus promoting a methodology of feedback-oriented design processes.
keywords online programming, cyber-physical systems, computational design, robotic fabrication, human-robot interaction
series ACADIA
type paper
email jsabin@cornell.edu
last changed 2016/10/24 11:12

_id ascaad2016_015
id ascaad2016_015
authors Sosa, Marco; Lina Ahmad
year 2016
title Integration of Digital Tools and Fabrication Methods for Learning CAAD - Innovative pedagogy methods applied in a design college in Abu Dhabi
source Parametricism Vs. Materialism: Evolution of Digital Technologies for Development [8th ASCAAD Conference Proceedings ISBN 978-0-9955691-0-2] London (United Kingdom) 7-8 November 2016, pp. 125-134
summary The interior design curriculum at the College of Arts & Creative Enterprises (CACE), Zayed University in Abu Dhabi, offers two CAAD courses; the first is concurrent with first-year Interior Design studio; the second is a year later. The objectives of the first is equip students with the tools needed to represent and communicate their designs, while the second looks in-depth into the process of documentations. This paper will focus on presenting our pedagogical approach in the first CAAD course, as well as tracing students implementation, knowledge utilization and how it is carried over into their main interior design studio. It will also shed light into CAAD influence on expanding student technical and material knowledge through direct space survey and documentation. The paper aims at presenting and reflecting upon a dynamic devised adaptable pedagogical method that identifies two student categories; those who learn how to ‘practice design’ (majority), and those who unfold the realm of ‘being a designer’ (minority). It is the latter few that continue their path, emerge into various international settings, and have a major influence on their local communities.
series ASCAAD
email marco.sosa@zu.ac.ae
last changed 2017/05/25 11:31

_id ecaade2016_037
id ecaade2016_037
authors Khabazi, Zubin and Budig, Michael
year 2016
title Adaptive Fabrication - Cellular Concrete Casting Using Digital Moulds
source Herneoja, Aulikki; Toni Österlund and Piia Markkanen (eds.), Complexity & Simplicity - Proceedings of the 34th eCAADe Conference - Volume 1, University of Oulu, Oulu, Finland, 22-26 August 2016, pp. 83-92
summary Computational design and digital fabrication have expanded the use of digital manufacturing machineries for the realization of architecture, yet they have their own limitations of material use. These limitations caused some materials like cement, plaster and clay become marginal in this new digital context, despite their vast use in the building industry. In this context, this paper will present a research, focusing on the use of concrete through the development of a custom-designed device, which is an adjustable digital mould. This digital mould has been designed specifically for a project called Procrystalline Wall and has been 'adapted' to the conditions of its agenda in terms of size, shape, typology, and even technical matters. However, this adaptability means that the device is not aimed to work for any other project and remain exclusive to this particular design only. This paper will further discuss the validity and obstacles of the presented method in a more global context.
wos WOS:000402063700010
keywords Concrete Fabrication; Digital Casting; Digital Adjustable Mould; Cellular Concrete Casting; Cellular Solid Morphologies
series eCAADe
email zubin.khabazi@gmail.com
last changed 2017/06/28 08:46

_id acadia16_414
id acadia16_414
authors Tabbarah, Faysal
year 2016
title Almost Natural Shelter: Non-Linear Material Misbehavior
source ACADIA // 2016: POSTHUMAN FRONTIERS: Data, Designers, and Cognitive Machines [Proceedings of the 36th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-77095-5] Ann Arbor 27-29 October, 2016, pp. 414-423
summary This paper critiques computational design and digital fabrication’s obsession with both precision and images of natural patterns by describing a messy attitude towards digital and material computation that integrates and blurs between linear and non-linear fabrication, resulting in material formations and spatial affects that are beyond pattern and image and are almost natural. The motivation behind the body of work presented in the paper is to question the production of space and aesthetics in a post-human frontier as we embark on a new geological era that is emerging out of the unprecedented influence of the human race on the planet’s ecological systems. The paper and the body of work posit that the blurring between the natural and the synthetic in the post-human frontier can materialize a conception of space that exhibits qualities that are both natural and synthetic. The paper is organized in three parts. It begins by describing the theoretical framework that drives the body of work. Next, it describes early digital and material casting explorations that began to blur between linear and non-linear fabrication to produce almost natural objects. Finally, it describes the process of designing and making Almost Natural Shelter, a spatial installation that emerges from the integration of messy computational design methodologies and chemically volatile non-linear fabrication. In specific, High Density Foam is persuaded to chemically self-compute in an attempt at uncovering a shelter that has almost natural spatial qualities, such as non-linear textural differentiation and sudden migration between different texture types.
keywords natural, texture, nonlinear fabrication, sensate systems
series ACADIA
type paper
email ftabbarah@aus.edu
last changed 2016/10/24 11:12

_id acadia16_154
id acadia16_154
authors Brugnaro, Giulio; Baharlou, Ehsan; Vasey, Lauren; Menges, Achim
year 2016
title Robotic Softness: An Adaptive Robotic Fabrication Process for Woven Structures
source ACADIA // 2016: POSTHUMAN FRONTIERS: Data, Designers, and Cognitive Machines [Proceedings of the 36th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-77095-5] Ann Arbor 27-29 October, 2016, pp. 154-163
summary This paper investigates the potential of behavioral construction strategies for architectural production through the design and robotic fabrication of three-dimensional woven structures inspired by the behavioral fabrication logic used by the weaverbird during the construction of its nest. Initial research development led to the design of an adaptive robotic fabrication framework composed of an online agent-based system, a custom weaving end-effector and a coordinated sensing strategy utilizing 3D scanning.The outcome of the behavioral weaving process could not be predetermined a priori in a digital model, but rather emerged out of the negotiation among design intentions, fabrication constraints, performance criteria, material behaviors and specific site conditions. The key components of the system and their role in the fabrication process are presented both theoretically and technically, while the project serves as a case study of a robotic production method envisioned as a soft system: a flexible and adaptable framework in which the moment of design unfolds simultaneously with fabrication, informed by a constant flow of sensory information.
keywords soft systems, agent-based systems, robotic fabrication, sensate systems
series ACADIA
type paper
email giuliobrugnaro@gmail.com
last changed 2016/10/24 11:12

_id acadia16_206
id acadia16_206
authors Devadass, Pradeep; Dailami, Farid; Mollica, Zachary; Self, Martin
year 2016
title Robotic Fabrication of Non-Standard Material
source ACADIA // 2016: POSTHUMAN FRONTIERS: Data, Designers, and Cognitive Machines [Proceedings of the 36th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-77095-5] Ann Arbor 27-29 October, 2016, pp
summary This paper illustrates a fabrication methodology through which the inherent form of large non-linear timber components was exploited in the Wood Chip Barn project by the students of Design + Make at the Architectural Association’s Hooke Park campus. Twenty distinct Y-shaped forks are employed with minimal machining in the construction of a structural truss for the building. Through this workflow, low-value branched sections of trees are transformed into complex and valuable building components using non-standard technologies. Computational techniques, including parametric algorithms and robotic fabrication methods, were used for execution of the project. The paper addresses the various challenges encountered while processing irregular material, as well as limitations of the robotic tools. Custom algorithms, codes, and post-processors were developed and integrated with existing software packages to compensate for drawbacks of industrial and parametric platforms. The project demonstrates and proves a new methodology for working with complex, large geometries which still results in a low cost, time- and quality-efficient process.
keywords parametric design, craft in digital communication, digital fabrication, sensate systems
series ACADIA
type paper
email pappurvsa@gmail.com
last changed 2016/10/24 11:12

_id acadia16_318
id acadia16_318
authors Huang, Alvin
year 2016
title From Bones to Bricks: Design the 3D Printed Durotaxis Chair and La Burbuja Lamp
source ACADIA // 2016: POSTHUMAN FRONTIERS: Data, Designers, and Cognitive Machines [Proceedings of the 36th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-77095-5] Ann Arbor 27-29 October, 2016, pp. 318-325
summary Drawing inspiration from the variable density structures of bones and the self-supported cantilvers of corbelled brick arches, the Durotaxis Chair and the La Burbuja lamp explore a material-based design process by responding to the challenge of designing a 3D print, rather than 3D printing a design. As such, the fabrication method and materiality of 3D printing define the generative design constraints that inform the geometry of each. Both projects are seen as experiments in the design of 3D printed three-dimensional space packing structures that have been designed specifically for the machines by which they are manufactured. The geometry of each project has been carefully calibrated to capitalize on a selection of specific design opportunities enabled by the capabilities and constraints of additive manufacturing. The Durotaxis Chair is a half-scale prototype of a fully 3D printed multi-material rocking chair that is defined by a densely packed, variable density three-dimensional wire mesh that gradates in size, scale, density, color, and rigidity. Inspired by the variable density structure of bones, the design utilizes principal stress analysis, asymptotic stability, and ergonomics to drive the logics of the various gradient conditions. The La Burbuja Lamp is a full scale prototype for a zero-waste fully 3D printed pendant lamp. The geometric articulation of the project is defined by a cellular 3D space packing structure that is constrained to the angles of repose and back-spans required to produce un-supported 3D printing.
keywords parametic design, digital fabrication, structural analysis, additive manufacturing, 3d printing
series ACADIA
type paper
email alvin@synthesis-dna.com
last changed 2016/10/24 11:12

_id acadia16_332
id acadia16_332
authors Retsin, Gilles; Garcia, Manuel Jimenez
year 2016
title Discrete Computational Methods for Robotic Additive Manufacturing: Combinatorial Toolpaths
source ACADIA // 2016: POSTHUMAN FRONTIERS: Data, Designers, and Cognitive Machines [Proceedings of the 36th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-77095-5] Ann Arbor 27-29 October, 2016, pp. 332-341
summary The research presented in this paper is part of a larger, emerging body of research into large-scale 3D printing. The research attempts to develop a computational design method specifically for large-scale 3D printing of architecture. Influenced by the concept of Digital Materials, this research is situated within a critical discussion of what fundamentally constitutes a digital object and process. This requires a holistic understanding, taking into account both computational design and fabrication. The intrinsic constraints of the fabrication process are used as opportunities and generative drivers in the design process. The paper argues that a design method specifically for 3D printing should revolve around the question of how to organize toolpaths for the continuous addition or layering of material. Two case-study projects advance discrete methods as efficient ways to compute a continuous printing process. In contrast to continuous models, discrete models allow users to serialize problems and errors in toolpaths. This allows a local optimization of the structure, avoiding the use of global, computationally expensive, problem-solving algorithms. Both projects make use of a voxel-based approach, where a design is generated directly from the combination of thousands of serialized toolpath fragments. The understanding that serially repeated elements can be assembled into highly complex and heterogeneous structures has implications stretching beyond 3D printing. This combinatorial approach for example also becomes highly valuable for construction systems based on modularity and prefabrication.
keywords prgrammable materials, simulation and design optimization, digital fabrication, big data
series ACADIA
type paper
email jg.manuel@gmail.com
last changed 2016/11/17 09:20

_id caadria2016_529
id caadria2016_529
authors Rust, Romana; David Jenny, Fabio Gramazio and Matthias Kohler
year 2016
title Spatial Wire Cutting: Cooperative robotic cutting of non-ruled surface geometries for bespoke building components
source Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016) / Melbourne 30 March–2 April 2016, pp. 529-538
summary The research project Spatial Wire Cutting (SWC) investi- gates a multi-robotic cutting technique that allows for an efficient production of geometrically complex architectural components. Being pursued by the group of Gramazio Kohler Research at ETH Zurich, this approach involves a spatially coordinated movement of two six- axis robotic arms that control the curvature of a hot-wire, which adopts itself against the resistance of the processed material (e.g. pol- ystyrene). In contrast to standard CNC hot-wire cutting processes, in which the cutting medium remains linear, it allows the automated fab- rication of non-ruled, doubly curved surfaces. This pursuit includes the development of a custom digital design and robotic control framework that combines computational simulation and manufactur- ing feedback information. Ultimately, SWC enables a considerably expanded design and fabrication space for complex architectural ge- ometries and their construction through automated robotic technology. This paper addresses the applied workflow and technology 1) such as computational design and simulation, robotic control and adaptive fabrication, 2) results of application within a two-week design and building workshop, and 3) will conclude with further steps of future research.
keywords Computational design and digital fabrication; feedback-based automated manufacturing; multi-robot control; digital simulation; hot-wire cutting
series CAADRIA
email rust@arch.ethz.ch
last changed 2016/03/11 09:21

_id acadia16_24
id acadia16_24
authors Savov, Anton; Buckton, Ben; Tessmann, Oliver
year 2016
title 20,000 Blocks: Can gameplay be used to guide non-expert groups in creating architecture?
source ACADIA // 2016: POSTHUMAN FRONTIERS: Data, Designers, and Cognitive Machines [Proceedings of the 36th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-77095-5] Ann Arbor 27-29 October, 2016, pp. 24-33
summary The paper follows research in engaging groups of non-trained individuals in the creation of architectural designs using games and crowdsourcing for human-directed problem-solving. With the proposed method, architectural experts can encode their design knowledge into custom-developed multiplayer gameplay in Minecraft. Non-expert players then are constrained by this gameplay which guides them to create unique architectural results. We describe a method with three components: guiding rules, verification routines and fast feedback. The method employs a real-time link between the game and structural analysis in Grasshopper to verify the designs. To prove the viability of these results, we use robotic fabrication, where the digital results are brought to reality at scale. A major finding of the work is the suite of tools for calibrating the balance of influence on the resulting designs between the Experts and the Players. We believe that this process can create designs which are not limited to parametrically optimal solutions but could also solve real-world problems in new and unexpected ways.
keywords robot-human collaboration, digital fabrication, gaming in design, big data
series ACADIA
type paper
email savov@dg.tu-darmstadt.de
last changed 2016/10/24 11:12

_id ecaade2016_234
id ecaade2016_234
authors Sousa, José Pedro and Martins, Pedro Filipe
year 2016
title The Robotic Production of the GRC Panels in the CorkCrete Arch Project - A stratified strategy for the fabrication of customized molds
source Herneoja, Aulikki; Toni Österlund and Piia Markkanen (eds.), Complexity & Simplicity - Proceedings of the 34th eCAADe Conference - Volume 1, University of Oulu, Oulu, Finland, 22-26 August 2016, pp. 153-160
summary The CorkCrete Arch was an experimental prototype built in the scope of a research project concerning the use of robotic fabrication technologies for non-standard solutions in architecture. It combined 2 materials, cork and GRC into a self-supporting lightweight building system, designed to explore the integration of different robotic fabrication technologies in one constructive solution. This paper is focused in providing a detailed description and analysis of the robotic fabrication process used in the production of the GRC components. The presented solution integrated robotic milling and hot-wire cutting technologies with a stratified mold design strategy that allowed for overcoming the limitations of each and enabled a time and cost efficient production process.
wos WOS:000402063700017
keywords Robotic Hot-Wire Cutting; Digital Fabrication; Glass Fiber Reinforced Concrete; Computational Design; Corkcrete
series eCAADe
email jsousa@arq.up.pt
last changed 2017/06/28 08:46

_id acadia16_298
id acadia16_298
authors Yu, Lei; Huang, Yijiang; Zhongyuan, Liu; Xiao, Sai; Liu, Ligang; Song, Guoxian; Wang, Yanxin
year 2016
title Highly Informed Robotic 3D Printed Polygon Mesh: A Nobel Strategy of 3D Spatial Printing
source ACADIA // 2016: POSTHUMAN FRONTIERS: Data, Designers, and Cognitive Machines [Proceedings of the 36th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-77095-5] Ann Arbor 27-29 October, 2016, pp. 298-307
summary Though robotic 3D printing technology is currently undergoing rapid development, most of the research and experiments are still based on a bottom up layering process. This paper addresses long term research into a robotic 3D printed polygon mesh whose struts are directly built up and joined together as rapidly generated physical wireframes. This paper presents a novel “multi-threaded” robotic extruder, as well as a technical strategy to create a “printable” polygon mesh that is collision-free during robotic operation. Compared to standard 3D printing, architectural applications demand much larger dimensions at human scale, geometrically lower resolution and faster production speed. Taking these features into consideration, 3D printed frameworks have huge potential in the building industry by combining robot arm technology together with FDM 3D printing technology. Currently, this methodology of rapid prototyping could potentially be applied on pre-fabricated building components, especially ones with uniform parabolic features. Owing to the mechanical features of the robot arm, the most crucial challenge of this research is the consistency of non-stop automated control. Here, an algorithm is employed not only to predict and solve problems, but also to optimize for a highly efficient construction process in coordination of the robotic 3D printing system. Since every stroke of the wireframe contains many parameters and calculations in order to reflect its native organization and structure, this robotic 3D printing process requires processing an intensive amount of data in the back stage.
keywords interdisciplinary design, craft in design computation, digital fabrication
series ACADIA
type paper
email asworkshop@vip.163.com
last changed 2016/10/24 11:12

_id acadia16_196
id acadia16_196
authors Yuan, Philip F.; Chai, Hua; Yan, Chao; Zhou, Jin Jiang
year 2016
title Robotic Fabrication of Structural Performance-based Timber Gridshell in Large-Scale Building Scenario
source ACADIA // 2016: POSTHUMAN FRONTIERS: Data, Designers, and Cognitive Machines [Proceedings of the 36th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-77095-5] Ann Arbor 27-29 October, 2016, pp 196-205
summary This paper investigates the potential of a digital geometry system to integrate structural performance-based design and robotic fabrication in the scenario of building a large-scale non-uniform timber shell. It argues that a synthesis of multi-objective optimization, design and construction phases is required in the realization of timber shell construction in architecture practice in order to fulfill the demands of building regulation. Confronting the structural challenge of the non-uniform shell, a digital geometry system correlates all the three phases by translating geometrical information between them. First, a series of structural simulations and experimentations with different objectives are executed to inform the particular shape and tectonic details of each shell component based on its local condition in the geometrical system. Then, controlled by the geometrical system, a hybrid process of different digital fabrication technologies, including a customized robotic timber mill, is established to enable the manufacture of the heterogeneous shell components. Ultimately, the Timber Structure Enterprise Pavilion as the demonstration and evaluation of this method is fabricated and assembled on site through a notational system to indicate the applicability of this research in practical scenarios.
keywords robotic fabrication, geometrical information modeling, simulation and design optimization, big data
series ACADIA
type paper
email philipyuan007@tongji.edu.cn
last changed 2016/10/24 11:12

_id acadia16_352
id acadia16_352
authors Farahi, Behnaz
year 2016
title Caress of the Gaze: A Gaze Actuated 3D Printed Body Architecture
source ACADIA // 2016: POSTHUMAN FRONTIERS: Data, Designers, and Cognitive Machines [Proceedings of the 36th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-77095-5] Ann Arbor 27-29 October, 2016, pp. 352-361
summary This paper describes the design process behind Caress of the Gaze, a project that represents a new approach to the design of a gaze-actuated, 3D printed body architecture—as a form of proto-architectural study—providing a framework for an interactive dynamic design. The design process engages with three main issues. Firstly, it aims to look at form or geometry as a means of controlling material behavior by exploring the tectonic properties of multi-material 3D printing technologies. Secondly, it addresses novel actuation systems by using Shape Memory Alloy (SMA) in order to achieve life-like behavior. Thirdly, it explores the possibility of engaging with interactive systems by investigating how our clothing could interact with other people as a primary interface, using vision-based eye-gaze tracking technologies. In so doing, this paper describes a radically alternative approach not only to the production of garments but also to the ways we interact with the world around us. Therefore, the paper addresses the emerging field of shape-changing 3D printed structures and interactive systems that bridge the worlds of robotics, architecture, technology, and design.
keywords eye-gaze tracking, interactive design, 3d printing, smart material, programmable matter, embedded responsiveness
series ACADIA
type paper
email farahibo@gmail.com
last changed 2016/10/24 11:12

_id caadria2016_755
id caadria2016_755
authors Loh, Paul; David Leggett and Timothy Cameron
year 2016
title Smart assembly in digital fabrication: designing workflow
source Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016) / Melbourne 30 March–2 April 2016, pp. 755-764
summary Digital fabrication project in academia has produced many grounds for experimentation. In recent years, techniques have also been tested extensively in practice within commercial project setting. This gives rise to an emerging breed of architectural practices whose work is increasingly centred on resolution of complex geometry to re- alizable projects. The resolution of parametrically driven design to production projects requires a different workflow, as often the com- pressed timeframe and budget requires the parametric model to cope with multiple streams of construction output as well as utilize the model in concurrent design processes. This paper examines a com- mercial project as case study to explore the abstraction, reduction and dissemination of information within a digital fabrication workflow. In this project, digital fabrication is deployed to reduce risk; mainly in manufacturing and its lead time. The research reveals how metadesign process at an early stage of the project can contribute to increase effi- ciency of the parametric model as well as delivering multiple streams of information for all the collaborators: architects, fabricators and builders. The team designed the assembly procedure into the paramet- ric workflow to facilitate off-site and on-site assembly. This is possi- ble through imbedding ‘smart’ detailing and structuring information with the workflow. The paper concludes by reflecting on the work- flow and asks if a metadesign driven fabrication workflow can create a more holistic approach to digital fabrication. The outcome of the case study is just one instance of the parametric machine that is devel- oped from an understanding of assembly process. This paper responds to the theme of continuous designing, through looking at digital fabri- cation as co-emergence of design procedure and practice.
keywords Digital fabrication; construction; design workflow
series CAADRIA
email paul.loh@unimelb.edu.au
last changed 2016/03/11 09:21

_id sigradi2016_766
id sigradi2016_766
authors Riether, Gernot
year 2016
title A Public Space for the Digital Age
source SIGraDi 2016 [Proceedings of the 20th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-7051-86-1] Argentina, Buenos Aires 9 - 11 November 2016, pp.260-265
summary With Information Technology such as smart phones we use public urban space differently. For example prior to cell phones people would meet in a public space by agreeing on a specific meeting location and time. Using cell phones people meet more spontaneous. Cell phones also allow people to be engaged in a very private phone conversation in the middle of a public space. In spite of information technology creating new uses for public space urban planners are still relying on old paradigms in designing and constructing it. A workshop was formulated around the question: How can we design urban spaces for a digital culture? The achieved outcome of the workshop was the design and realization of a public space that addresses this challenge. To do that students were asked to come up with new functions for public spaces, test materials, help seeking for funding and creating partnerships with the city, the industry and nonprofit organizations. During the duration of a one-semester timeframe the studio was facing a series of challenges dealing with the design, fabrication and realization of an urban space. This paper will describe the challenges of designing urban spaces for a digital culture, the structure of the workshop, the interventions made during the process and the final project, an urban landscape titled “Urban Blanket” that was build in Midtown Atlanta.
keywords Public Space; Information Technology; Digital Fabrication; Thermoforming; Simulation
series SIGraDi
email griether@gmail.com
last changed 2017/06/21 12:21

_id ecaade2016_048
id ecaade2016_048
authors Abramovic, Vasilija and Achten, Henri
year 2016
title From Moving Cube to Urban Interactive Structures - A case study
source Herneoja, Aulikki; Toni Österlund and Piia Markkanen (eds.), Complexity & Simplicity - Proceedings of the 34th eCAADe Conference - Volume 1, University of Oulu, Oulu, Finland, 22-26 August 2016, pp. 661-668
summary When thinking about the future vision of a city, having in mind recent development in digital technologies and digital design tools we are inclined to expect new building structures which incorporate this technology to better help us manage the complexity of life, and to simplify our daily lives and tasks. The idea behind this research paper lies in design of such structures, which could be put inside an urban context and engage in creating a built environment that can add more to the quality of life. For us Interactive architecture is architecture that is responsive, flexible, changing, always moving and adapting to the needs of today. The world is becoming more dynamic, society is constantly changing and the new needs it develops need to be accommodated. As a result architecture has to follow. Spaces have to become more adaptive, responsive and nature concerned, while having the ability for metamorphosis, flexibility and interactivity. Taken as a starting point of this idea is a specific module from graduation project in 2014 "The Unexpected city", where it was possible to test out first ideas about interactive and flexible objects in an urban environment.
wos WOS:000402063700071
keywords Flexible architecture; Interactive architecture; Responsive systems
series eCAADe
email vasilijaabramovic@gmail.com
last changed 2017/06/28 08:46

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 29HOMELOGIN (you are user _anon_233073 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002