CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 21 to 40 of 144

_id acadia16_460
id acadia16_460
authors Dade-Robertson, Martyn; Corral, Javier Rodriguez; Mitrana, Helen; Zhang, Meng; Wipat, Anil; Ramirez-Figueroa, Carolina; Hernan, Luis
year 2016
title Thinking Soils: A synthetic biology approach to material-based design computation
source ACADIA // 2016: POSTHUMAN FRONTIERS: Data, Designers, and Cognitive Machines [Proceedings of the 36th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-77095-5] Ann Arbor 27-29 October, 2016, pp. 460-469
summary The paper details the computational modelling work to define a new type of responsive material system based on genetically engineered bacteria cells. We introduce the discipline of synthetic biology and show how it may be possible to program a cell to respond genetically to inputs from its environment. We propose a system of synthetic biocementing, where engineered cells, living within a soil matrix, respond to pore pressure changes in their environment when the soil is loaded by synthesising new material and strengthening the soil. We develop a prototype CAD system which maps genetic responses of individual bacteria cells to geotechnical models of stress and pore pressure. We show different gene promoter sensitivities may make substantial changes to patterns of consolidation. We conclude by indicating future research in this area which combines both in vivo and in silico work.
keywords intelligent materials, material based design computation, synthetic biology, embedded responsiveness
series ACADIA
type paper
email martyn.dade-robertson@ncl.ac.uk
last changed 2016/10/24 11:12

_id e1e2
authors Danahy, John
year 1988
title Engaging Intuitive Visual Thinking in Urban Design Modelling: A Real-Time Hypothesis
source Computing in Design Education [ACADIA Conference Proceedings] Ann Arbor (Michigan / USA) 28-30 October 1988, pp. 87-97
summary This paper will present prototypical software being used in the teaching of urban design to students and for use by professionals in the early stages of a project. The system is intended to support a heuristic approach to design. That is, it supports a process of refining ideas and understandings through a process of trial and error. The support or aid to design comes in the form of a didactic real-time programme. Its power lies in its ability to provide instantaneous response to operations on the data that can allow one to develop threedimensional spatial ideas in an intuitively driven manner. This condition appears to occur for both novice and expert computer operators.

The presentation will present our experience to-date in using conventional computer graphic tools to represent design ideas and contrast it with a video demonstration of our prototypical dynamic urban design modelling software for the Silicon Graphics IRIS computers.

series ACADIA
email jwdanahy@rogers.com
last changed 2003/04/26 19:36

_id acadia16_106
id acadia16_106
authors Das, Subhajit; Day, Colin; Hauck, John; Haymaker, John; Davis, Diana
year 2016
title Space Plan Generator: Rapid Generationn & Evaluation of Floor Plan Design Options to Inform Decision Making
source ACADIA // 2016: POSTHUMAN FRONTIERS: Data, Designers, and Cognitive Machines [Proceedings of the 36th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-77095-5] Ann Arbor 27-29 October, 2016, pp. 106-115
summary Design exploration in architectural space planning is often constrained by tight deadlines and a need to apply necessary expertise at the right time. We hypothesize that a system that can computationally generate vast numbers of design options, respect project constraints, and analyze for client goals, can assist the design team and client to make better decisions. This paper explains a research venture built from insights into space planning from senior planners, architects, and experts in the field, coupled with algorithms for evolutionary systems and computational geometry, to develop an automated computational framework that enables rapid generation and analysis of space plan layouts. The system described below automatically generates hundreds of design options from inputs typically provided by an architect, including a site outline and program document with desired spaces, areas, quantities, and adjacencies to be satisfied. We envision that this workflow can clarify project goals early in the design process, save time, enable better resource allocation, and assist key stakeholders to make informed decisions and deliver better designs. Further, the system is tested on a case study healthcare design project with set goals and objectives.
keywords healthcare spaces, facility layout design, design optimization, decision making, binary data tree structure, generative design, automated space plans
series ACADIA
type paper
email das@gatech.edu
last changed 2016/10/24 11:12

_id acadia16_116
id acadia16_116
authors Davis, Daniel
year 2016
title Evaluating Buildings with Computation and Machine Learning
source ACADIA // 2016: POSTHUMAN FRONTIERS: Data, Designers, and Cognitive Machines [Proceedings of the 36th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-77095-5] Ann Arbor 27-29 October, 2016, pp. 116-123
summary Although computers have significantly impacted the way we design buildings, they have yet to meaningfully impact the way we evaluate buildings. In this paper we detail two case studies where computation and machine learning were used to analyze data produced by building inhabitants. We find that a building’s ‘data exhaust’ provides a rich source of information for longitudinally analyzing people’s architectural preferences. We argue that computation-driven evaluation could supplement traditional post occupancy evaluations.
keywords spatial analytics, machine learning, post occupancy evaluation
series ACADIA
type paper
email deardanieldavis@gmail.com
last changed 2016/10/24 11:12

_id acadia16_488
id acadia16_488
authors Derme, Tiziano; Mitterberger, Daniela; Di Tanna, Umberto
year 2016
title Growth Based Fabrication Techniques for Bacterial Cellulose: Three-Dimensional Grown Membranes and Scaffolding Design for Biological Polymers
source ACADIA // 2016: POSTHUMAN FRONTIERS: Data, Designers, and Cognitive Machines [Proceedings of the 36th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-77095-5] Ann Arbor 27-29 October, 2016, pp. 488-495
summary Self-assembling manufacturing for natural polymers is still in its infancy, despite the urgent need for alternatives to fuel-based products. Non-fuel based products, specifically bio-polymers, possess exceptional mechanical properties and biodegradability. Bacterial cellulose has proven to be a remarkably versatile bio-polymer, gaining attention in a wide variety of applied scientific applications such as electronics, biomedical devices, and tissue-engineering. In order to introduce bacterial cellulose as a building material, it is important to develop bio-fabrication methodologies linked to material-informed computational modeling and material science. This paper emphasizes the development of three-dimensionally grown bacterial cellulose (BC) membranes for large-scale applications, and introduces new manufacturing technologies that combine the fields of bio-materials science, digital fabrication, and material-informed computational modeling. This paper demonstrates a novel method for bacterial cellulose bio-synthesis as well as in-situ self-assembly fabrication and scaffolding techniques that are able to control three-dimensional shapes and material behavior of BC. Furthermore, it clarifies the factors affecting the bio-synthetic pathway of bacterial cellulose—such as bacteria, environmental conditions, nutrients, and growth medium—by altering the mechanical properties, tensile strength, and thickness of bacterial cellulose. The transformation of the bio-synthesis of bacterial cellulose into BC-based bio-composite leads to the creation of new materials with additional functionality and properties. Potential applications range from small architectural components to large structures, thus linking formation and materialization, and achieving a material with specified ranges and gradient conditions, such as hydrophobic or hydrophilic capacity, graded mechanical properties over time, material responsiveness, and biodegradability.
keywords programmable materials, material agency, biomimetics and biological design
series ACADIA
type paper
email tiziano.derme@gmail.com
last changed 2016/10/24 11:12

_id acadia16_206
id acadia16_206
authors Devadass, Pradeep; Dailami, Farid; Mollica, Zachary; Self, Martin
year 2016
title Robotic Fabrication of Non-Standard Material
source ACADIA // 2016: POSTHUMAN FRONTIERS: Data, Designers, and Cognitive Machines [Proceedings of the 36th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-77095-5] Ann Arbor 27-29 October, 2016, pp
summary This paper illustrates a fabrication methodology through which the inherent form of large non-linear timber components was exploited in the Wood Chip Barn project by the students of Design + Make at the Architectural Association’s Hooke Park campus. Twenty distinct Y-shaped forks are employed with minimal machining in the construction of a structural truss for the building. Through this workflow, low-value branched sections of trees are transformed into complex and valuable building components using non-standard technologies. Computational techniques, including parametric algorithms and robotic fabrication methods, were used for execution of the project. The paper addresses the various challenges encountered while processing irregular material, as well as limitations of the robotic tools. Custom algorithms, codes, and post-processors were developed and integrated with existing software packages to compensate for drawbacks of industrial and parametric platforms. The project demonstrates and proves a new methodology for working with complex, large geometries which still results in a low cost, time- and quality-efficient process.
keywords parametric design, craft in digital communication, digital fabrication, sensate systems
series ACADIA
type paper
email pappurvsa@gmail.com
last changed 2016/10/24 11:12

_id 4743
authors Dvorak, Robert W.
year 1988
title Designing in the CAD Studio
source Computing in Design Education [ACADIA Conference Proceedings] Ann Arbor (Michigan / USA) 28-30 October 1988, pp. 123-134
summary The "CAD Studio" is one of many design options that fourth year students may select in the College of Architecture. In this electronic environment, the students analyze and present their designs totally on the computer. The vehicle used is a fifteen week architectural problem called the "Calor Redesign Project".

The "Calor" problem requires the move of a famous residence to a hot arid climate. The residence must then be redesigned in the original architect's style so the building becomes as energy efficient as possible in its new arid environment. The students are required to use as design criteria a new building program, the design philosophy of the original architect, and appropriate passive energy techniques that will reduce the thermal stress on the building. The building's energy response is measured by using an envelope energy analysis program called "Calor".

Much of the learning comes from imposing a new set of restraints on a famous piece of architecture and asking the student to redesign it. The students not only need to learn and use a different design philosophy, but also develop new skills to communicate their ideas on the computer. Both Macintosh and IBM computers are used with software ranging from Microsoft Works, Superpaint, AutoCAD, MegaCAD, Dr Halo, to Calor.

series ACADIA
last changed 1999/01/01 18:28

_id acadia16_394
id acadia16_394
authors Eisinger, Daniel; Putt, Steven
year 2016
title Formeta 3D: Posthuman Participant Historian
source ACADIA // 2016: POSTHUMAN FRONTIERS: Data, Designers, and Cognitive Machines [Proceedings of the 36th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-77095-5] Ann Arbor 27-29 October, 2016, pp. 394-401
summary Formeta:3D is a project that engages the posthuman through the development of a machine that translates inputs from its surroundings into physical form in real-time. By responding to interaction with the inhabitants of its environs and incorporating the detected activity in the inflections of the produced form, it has an impact on the activity in the space, resulting in a recursive feedback loop that incorporates the digital, the physical, and the experiential. This paper presents the development of this project in detail, providing a methodology and toolchain for implementing real-time interaction with additive physical form derived from digital inputs and examining the results of an interactive installation set up to test the implementation.
keywords tool streams, digital fabrication, human-computer interaction, sensate systems
series ACADIA
type paper
email dmeisinger@bsu.edu
last changed 2016/10/24 11:12

_id acadia16_450
id acadia16_450
authors Estevez, Alberto T.
year 2016
title Towards Genetic Posthuman Frontiers in Architecture & Design
source ACADIA // 2016: POSTHUMAN FRONTIERS: Data, Designers, and Cognitive Machines [Proceedings of the 36th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-77095-5] Ann Arbor 27-29 October, 2016, pp. 450-459
summary This paper includes a brief history about the beginning of the practical application of real genetics to architecture and design. Genetics introduces a privileged point-of-view for both biology and the digital realm, and these two are the main characters (the protagonists) in our posthuman society. With all of its positive and negative aspects, the study of genetics is becoming the cornerstone of our posthuman future precisely because it is at the intersection of both fields, nature and computation, and because it is a science that can command both of them from within—one practically and the other one theoretically. Meanwhile, through genetics and biodigital architecture and design, we are searching at the frontiers of knowledge for planetary benefit. In order to enlighten us about these issues, the hero image (Figure 1) has been created within the framework of scanning electron microscope (SEM) research on the genesic level, where masses of cells organize themselves into primigenic structures. Microscope study was carried out at the same time as the aforementioned genetic research in order to find structures and to learn typologies that could be of interest for architecture, here illustrated as an alternative landscape of the future. Behind this hero image is the laboratory’s first effort to begin the real application of genetics to architecture, thereby fighti hti ng for the sustainability of our entire planet and a better world
keywords performance in design, material agency, biomimetics and biological design, embedded responsiveness
series ACADIA
type paper
email estevez@uic.es
last changed 2016/10/24 11:12

_id acadia16_352
id acadia16_352
authors Farahi, Behnaz
year 2016
title Caress of the Gaze: A Gaze Actuated 3D Printed Body Architecture
source ACADIA // 2016: POSTHUMAN FRONTIERS: Data, Designers, and Cognitive Machines [Proceedings of the 36th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-77095-5] Ann Arbor 27-29 October, 2016, pp. 352-361
summary This paper describes the design process behind Caress of the Gaze, a project that represents a new approach to the design of a gaze-actuated, 3D printed body architecture—as a form of proto-architectural study—providing a framework for an interactive dynamic design. The design process engages with three main issues. Firstly, it aims to look at form or geometry as a means of controlling material behavior by exploring the tectonic properties of multi-material 3D printing technologies. Secondly, it addresses novel actuation systems by using Shape Memory Alloy (SMA) in order to achieve life-like behavior. Thirdly, it explores the possibility of engaging with interactive systems by investigating how our clothing could interact with other people as a primary interface, using vision-based eye-gaze tracking technologies. In so doing, this paper describes a radically alternative approach not only to the production of garments but also to the ways we interact with the world around us. Therefore, the paper addresses the emerging field of shape-changing 3D printed structures and interactive systems that bridge the worlds of robotics, architecture, technology, and design.
keywords eye-gaze tracking, interactive design, 3d printing, smart material, programmable matter, embedded responsiveness
series ACADIA
type paper
email farahibo@gmail.com
last changed 2016/10/24 11:12

_id 0446
authors Fasse, Isabelle
year 1998
title La modélisation de projets architecturaux comme support d'analyse d'oeuvres architecturale
source Computerised Craftsmanship [eCAADe Conference Proceedings] Paris (France) 24-26 September 1998, pp. 72-77
summary A l'heure où l'ordinateur n'est pas seulement utilisé comme instrument de dessin mais de plus en plus mis à contribution comme outil d'aide à la conception, l'approche de l'informatique en Ecole d'Architecture demande une pédagogie adaptée aux disciplines enseignées qui va au delà de l'apprentissage de l'utilisation du matériel et des logiciels. Le travail demandé en 4ème année aux étudiants de l'école d'architecture de Marseille Luminy repose sur l'analyse d'un projet architectural pris dans l'oeuvre d'un architecte de leur choix. Cette analyse doit amener les étudiants à proposer une méthode de travail basée sur les outils informatiques mis à leur disposition qui les aide par la saisie et la représentation informatique du projet, à formuler et évaluer les hypothèses de conception qui ont menées à la réalisation du projet étudié. Cette approche basée sur l'analyse du projet ouvre la perspective de l'utilisation de l'outil informatique dans les étapes de l'analyse, de la conception et de la communication d'un projet.
series eCAADe
more http://www.paris-valdemarne.archi.fr/archive/ecaade98/html/12fasse/index.htm
last changed 2003/03/05 12:15

_id acadia16_124
id acadia16_124
authors Ferrarello, Laura
year 2016
title The Tectonic of the Hybrid Real: Data Manipulation, Oxymoron Materiality, and Human-Machine Creative Collaboration
source ACADIA // 2016: POSTHUMAN FRONTIERS: Data, Designers, and Cognitive Machines [Proceedings of the 36th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-77095-5] Ann Arbor 27-29 October, 2016, pp. 124-129
summary This paper describes the latest progress of the design platform Digital Impressionism (DI), created by staff and students in the Information Experience Design programme at the Royal College of Art in London. DI aims to bridge human creative thinking with machine computation, under the theoretical method/concept of oxymoron tectonic. Oxymoron tectonic describes the process under which hybrid materiality, that is the materiality created between the digital and the physical, takes form in human-machine creative interactions. The methodology intends to employ multimaterial 3D printers in combination with data manipulation (a process that gives data physical substance), pointclouds, and the influence of intangible environmental data (like sound and wind) to model physical forms by interfacing digital and physical making. In DI, modeling is a hybrid set of actions that take place at the boundary of the physical and digital. Through this interactive platform, design is experienced as a complex, hybrid process, which we call a digital tectonic; forms are constructed via a creative feedback loop of human engagement with nonhuman agents to form a creative network of sustainable and interactive design and fabrication. By developing a mutual understanding of design, machines and humans work together in the process of design and making.
keywords human-computer interaction and design, craft in design computation
series ACADIA
type paper
email laura.ferrarello@rca.ac.uk
last changed 2016/10/24 11:12

_id acadia16_478
id acadia16_478
authors Franzke, Luke; Rossi, Dino; Franinovic, Karmen
year 2016
title Fluid Morphologies: Hydroactive Polymers for Responsive Architecture
source ACADIA // 2016: POSTHUMAN FRONTIERS: Data, Designers, and Cognitive Machines [Proceedings of the 36th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-77095-5] Ann Arbor 27-29 October, 2016, pp. 478-487
summary This paper describes Hydroactive Polymers (HAPs), a novel way of combining shape-changing Electroactive Polymers (EAPs) and water for potential design and architectural explorations. We present a number of experiments together with the Fluid Morphologies installation, which demonstrated the materials through an interactive and sensory experience. We frame our research within the context of both material science and design/architecture projects that engage the unique material properties of EAPs. A detailed description of the design and fabrication process is given, followed by a discussion of material limitations and potential for improving robustness and production. We demonstrate fluid manipulation of light and shadow that would be impossible to achieve with traditional electromechanical actuators. Through the development of this new actuator, we have attempted to advance the accessibility of programmable materials for designers and architects to conduct hands-on experiments and prototypes. We thus conclude that the HAP modules hold a previously unexplored yet promising potential for a new kind of shape-changing, liquid-based architecture
keywords active materials, electroactive polymers, programmable materials, embedded responsiveness
series ACADIA
type paper
email lukefranzke@gmail.com
last changed 2016/10/24 11:12

_id acadia16_12
id acadia16_12
authors Gerber, David Jason; Pantazis, Evangelos
year 2016
title A Multi-Agent System for Facade Design: A design methodology for Design Exploration, Analysis and Simulated Robotic Fabrication
source ACADIA // 2016: POSTHUMAN FRONTIERS: Data, Designers, and Cognitive Machines [Proceedings of the 36th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-77095-5] Ann Arbor 27-29 October, 2016, pp. 12-23
summary For contemporary design practices, there still remains a disconnect between design tools used for early stage design exploration and performance analysis, and those used for fabrication and construction of complex tectonic architectural systems. The research brings forward downstream fabrication constraints into the up-stream design exploration and design decision making. This paper addresses the issues of developing an integrated digital design work-flow and details a research framework for the incorporation of environmental performance into a robotic fabrication for early stage design exploration and generation of intricate and complex alternative façade designs. The method allows the user to import a design surface, define design parameters, set a number of environmental performance objectives, and then simulate and select a robotic construction strategy. Based on these inputs, design alternatives are generated and evaluated in terms of their performance criteria in consideration of their robotically simulated constructability. In order to validate the proposed framework, an experimental case study of office building façade designs that are generatively created from a multi-agent system for design methodology is design explored and evaluated. Initial results define a heuristic function for improving simulated robotic constructability and illustrate the functionality of our prototype. Project limitations and future research steps are then discussed.
keywords generative design, multi-objective design optimization, robotic fabrication, simulation, design performance, design decision making
series ACADIA
type paper
email dgerber@usc.edu
last changed 2016/10/24 11:12

_id c085
authors Goldman, Glenn and Zdepski, M. Stephen
year 1988
title Abstraction and Representation: Computer Graphics and Architectural Design
source Computing in Design Education [ACADIA Conference Proceedings] Ann Arbor (Michigan / USA) 28-30 October 1988, pp. 205-215
summary While there is evidence to support that many important aspects of architectural design are not graphically based, but analytical in nature, there remains a long history of design exploration dependent on representation. Furthermore, methods of imager 3While there is evidence to support that many important aspects of architectural design are not graphically based, but analytical in nature, there remains a long history of design exploration dependent on representation. Furthermore, methods of imager 3While there is evidence to support that many important aspects of architectural design are not graphically based, but analytical in nature, there remains a long history of design exploration dependent on representation. Furthermore, methods of imager 3While there is evidence to support that many important aspects of architectural design are not graphically based, but analytical in nature, there remains a long history of design exploration dependent on representation. Furthermore, methods of imager 3While there is evidence to support that many important aspects of architectural design are not graphically based, but analytical in nature, there remains a long history of design exploration dependent on representation. Furthermore, methods of imager 3While there is evidence to support that many important aspects of architectural design are not graphically based, but analytical in nature, there remains a long history of design exploration dependent on representation. Furthermore, methods of imager 3While there is evidence to support that many important aspects of architectural design are not graphically based, but analytical in nature, there remains a long history of design exploration dependent on representation. Furthermore, methods of imager 3While there is evidence to support that many important aspects of architectural design are not graphically based, but analytical in nature, there remains a long history of design exploration dependent on representation. Furthermore, methods of imager 3While there is evidence to support that many important aspects of architectural design are not graphically based, but analytical in nature, there remains a long history of design exploration dependent on representation. Furthermore, methods of imager 3While there is evidence to support that many important aspects of architectural design are not graphically based, but analytical in nat
series ACADIA
email goldman@njit.edu
last changed 2003/04/17 13:32

_id 85b9
authors Haglund, Bruce and Sumption, Brian
year 1988
title Toward a Computer Integrated Design Studio
source Computing in Design Education [ACADIA Conference Proceedings] Ann Arbor (Michigan / USA) 28-30 October 1988, pp. 291-299
summary The formation of our vision for a computer-integrated design studio is outlined. The ways in which our experience in teaching with computers in a variety of settings and in developing our own computer tools has contributed to this is explained. The next step in actualization of our vision is the creation of a design curriculum and a computerized studio which support the integration of this new technology into the traditions of architectural education.
series ACADIA
last changed 1999/01/01 18:37

_id acadia16_72
id acadia16_72
authors Harrison, Paul
year 2016
title What Bricks Want: Machine Learning and Iterative Ruin
source ACADIA // 2016: POSTHUMAN FRONTIERS: Data, Designers, and Cognitive Machines [Proceedings of the 36th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-77095-5] Ann Arbor 27-29 October, 2016, pp. 72-77
summary Ruin has a bad name. Despite the obvious complications, failure provides a rich opportunity—how better to understand a building’s physicality than to watch it collapse? This paper offers a novel method to exploit failure through physical simulation and iterative machine learning. Using technology traditionally relegated to special effects, we can now understand collapse on a granular level: since modern-day physics engines track object-object collisions, they enable a close reading of the spatial preferences that underpin ruin. In the case of bricks, that preference is relatively simple—to fall. By idealizing bricks as rigid bodies, one can understand the effects of gravitational force on each individual brick in a masonry structure. These structures are sometimes able to ‘settle,’ resulting in a stable equilibrium state; in many cases, it means that they will simply collapse. Analyzing ruin in this way is informative, to be sure, but it proves most useful when applied in series. The evolutionary solver described in this paper closely monitors the performance of constituent bricks and ensures that the most successful structures are emulated by later generations. The tool consists of two parts: a user interface for design and the solver itself. Once the architect produces a potential design, the solver performs an evolutionary optimization; after a few hundred iterations, the end result is a structurally sound version of the unstable original. It is hoped that this hybrid of top-down and bottom-up design strategies offers an architecture that is ultimately strengthened by its contingencies.
keywords rigid body analysis, machine learning, multi-agent structural optimization, sensate systems
series ACADIA
type paper
email ph.harrison@mail.utoronto.ca
last changed 2016/10/24 11:12

_id c2c6
authors Hendricx , Ann
year 1997
title Shape, Space And Building Element: Development of a Conceptual Object Model for the Design Process
source Challenges of the Future [15th eCAADe Conference Proceedings / ISBN 0-9523687-3-0] Vienna (Austria) 17-20 September 1997
summary The paper describes the first steps taken in the search for a central object model presenting all possible data, concepts and operations concerning the architectural design process.  From the early design stage, an architectural model can be built on computer.  A central object model of this process is essential: a model describing geometrical shapes, spaces, building elements and user activities, together with all the basic operations these entities can undertake.  The model could provide the necessary information for the performance of tests to assist the designer (energy calculation, stability check, costs ...).  Appropriate interfaces between the object model and existing software packages allow different actors in the design process to make use of the model’s data. First, the conceptual model for CAAD in the design process is described. The second part deals with the methodology used for developing the object model: M.E.R.O.DE (Model-driven Entity-Relationship Object-oriented Development) proves to be a firm base to start our design.  Finally, we present some aspects of the first prototype for such a central object model.
keywords Object Model, CAAD, Object-oriented
series eCAADe
email ann.hendricx@asro.kuleuven.ac.be
more http://info.tuwien.ac.at/ecaade/proc/hendricx/hendricx.htm
last changed 2001/08/17 13:11

_id c8c8
authors Hendricx, A., Neuckermans, H., Vandevyvere, H. and Nuyts, K.
year 1996
title CAAD in Pedagogical Practice
source Education for Practice [14th eCAADe Conference Proceedings / ISBN 0-9523687-2-2] Lund (Sweden) 12-14 September 1996, pp. 199-210
summary The course on CAAD at the KU Leuven is part of the course on design methodology and theory from which it is the most recent and natural extension. Attached to this course a series of assignments has been developed which bring the students in 45 hours to a non-trivial level of acquaintance with CAAD. Our assignments are primarily directed towards practice. They are built on top of AutoCAD to which we have added in-house developments in order to focus on specific pedagogical goals within a very limited time. After a general introduction on Windows (file management) and AutoCAD (basics) students make the following assignments (main pedagogical goals in between brackets). colophon (working with blocks), detail (2D-drawing, hatching, editing), facade design using a built-in system of proportion (slides, scriptfile), extraction (linking alphanumerical and graphical entities), container (level of detail, icon menus, viewports), surface modelling (modelling 3D-objects with surfaces), fractal tree (recursion in Autolisp), solid modelling (Leicester engineering building), lighting (integration of drawing and computation of illumination levels), pressure lines in an arc (interactive design of an arc), demos. The paper presents and comments these assignments and shows results from the last 2 years.

series eCAADe
email ann.hendricx@asro.kuleuven.ac.be, herman.neuckermans@asro.kuleuven.ac.be
last changed 1998/08/17 14:22

_id 2004
authors Hendricx, A.
year 2000
title A Core Object Model for Architectural Design
source Katholieke Universiteit Leuven
summary A core object model apt to describe architectural objects and their functionality is one of the keystones to an integrated digital design environment for architecture. The object model presented in this thesis is based on a conceptual framework for computer aided architectural design (CAAD) and aims to assist the architect designer right from the early stages in the design process. For its development the object-oriented analysis method MERODE (Model-based Existence-dependency Relationship Object-oriented Development) is used. After a survey on the role of computers in the architectural design process and on particular Product Modelling initiatives, the model is elaborated in two phases: the enterprise-modelling phase and the higher functionality-modelling phase. Actual design cases and test implementations help to establish the conceptual model and illustrate its concepts. The appendices provide a detailed description of both the object model and one of the case studies. The architect’s point of view and the specific nature of the architectural design process are the basic considerations, thus leading to a unique model that hopes to make a valuable contribution to the research area of integrated design environments.
series thesis:PhD
email ann.hendricx@asro.kuleuven.ac.be
last changed 2003/02/12 21:37

For more results click below:

show page 0this is page 1show page 2show page 3show page 4show page 5show page 6show page 7HOMELOGIN (you are user _anon_380276 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002