CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers

Hits 1 to 5 of 5

_id acadia17_222
id acadia17_222
authors Dierichs, Karola; Wood, Dylan; Correa, David; Menges, Achim
year 2017
title Smart Granular Materials: Prototypes for Hygroscopically Actuated Shape-Changing Particles
source ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 222-231
summary Hygroscopically Actuated Granular Materials are a new class of designed granular materials in architecture. Granular materials are large numbers of particles that are only in loose contact with each other. If the individual particle in such a granular material is defined in its geometry and material make-up, one can speak of a designed granular material. In recent years these designed granular materials have been explored as architectural construction systems. Since the particles are not bound to each other, granular materials are rapidly reconfigurable and recyclable. Yet one of the biggest assets of designed granular materials is the fact that their overall behavior can be designed by altering the geometry or material make-up of the individual composing particles. Up until now mainly non-actuated granular materials have been investigated. These are designed granular materials in which the geometry of the particle stays the same over time. The proposed Hygroscopically Actuated Granular Materials are systems consisting of time-variable particle geometries. Their potential lies in the fact that one and the same granular system can be designed to display different mechanical behaviors over the course of time. The research presented here encompasses three case studies, which complement each other both with regard to the development of the particle system and the applied construction processes. All three cases are described both with regard to the methods used and the eventual outcome aiming at a potential design system for Hygroscopically Actuated Granular Materials. To conclude, these results are compared and directions of further research are indicated.
keywords material and construction; smart materials; smart assembly/construction
series ACADIA
last changed 2017/10/17 09:12

_id ijac201311305
id ijac201311305
authors Esquivel, Gabriel; Dylan Weiser, Darren J Hartl, Daniel Whitten
year 2013
title POP-OP: A Shape Memory-Based Morphing Wall
source International Journal of Architectural Computing vol. 11 - no. 3, 347-362
summary Recent tendencies in architecture take a unique point of view, with aesthetically novel and unnatural sensibilities emerging from a close scrutiny and study of apparently natural systems. These tendencies are being driven by mathematical and computational abstractions that transform the way we understand the matterinformation relationship. This project was inspired by Op Art, a twentieth century art movement and style in which artists sought to create an impression of movement on an image surface by means of an optical illusion. Passive elements consisting of composite laminates were produced with the goal of creating lightweight, semi-rigid, and nearly transparent pieces. The incorporation of active materials comprised a unique aspect of this project: the investigation of surface movement through controlled and repeatable deformation of the composite structure using shape memory alloy (SMA) wiring technology. The integration of composite materials with SMA wiring and Arduino automation control resulted in an architectural wall that incorporated perceptual and actual motion.
series journal
last changed 2019/05/24 07:55

_id acadia19_510
id acadia19_510
authors Leder, Samuel; Weber, Ramon; Wood, Dylan; Bucklin, Oliver; Menges, Achim
year 2019
title Distributed Robotic Timber Construction
source ACADIA 19:UBIQUITY AND AUTONOMY [Proceedings of the 39th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-59179-7] (The University of Texas at Austin School of Architecture, Austin, Texas 21-26 October, 2019) pp. 510-519
summary Advances in computational design and robotic building methods have the potential to enable architects to author more sustainable, efficient, and geometrically varied systems that shape our built environment. To fully harness this potential, the inherent relationship of design and building processes requires a fundamental shift in the way we design and how we build. High degree of customization in architectural projects and constantly changing conditions of construction environments pose significant challenges for the implementation of automated construction machines. Beyond traditional, human-inspired, industrial robotic building methods, we present a distributed robotic system where the robotic builders are designed in direct relationship with the material and architecture they assemble. Modular, collaborative, single axis robots are designed to utilize standardized timber struts as a basic building material, and as a part of their locomotion system, to create large-scale timber structures with high degrees of differentiation. The decentralized, multi-robot system uses a larger number of simple machines that collaborate in teams to work in parallel on varying tasks such as material transport, placement, and fixing. The research explores related architectural and robotic typologies to create timber structures with novel aesthetics and performances.
series ACADIA
type normal paper
last changed 2019/12/18 08:03

_id caadria2018_198
id caadria2018_198
authors Reinhardt, Dagmar, Candido, Christhina, Cabrera, Densil, Wozniak-O'Connor, Dylan, Watt, Rodney, Bickerton, Chris, Titchkosky, Ninotschka and Houda, Maryam
year 2018
title Onsite Robotic Fabrication for Flexible Workspaces - Towards Design and Robotic Fabrication of an Integrated Responsive Ceiling System for A Workspace Environment
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 1, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 59-68
summary Open, flexible workspaces were introduced decades ago, but architectural design approaches to ceiling systems have not changed substantially. This paper discusses the development of strategies and prototypes for a lightweight, integrated ceiling structure that is robotically woven. Through geometrically complex, fibre-reinforced building elements that are produced onsite, a new distribution system for data and light can be provided and support individual and multi-group collaborations in an contemporary open-plan office for maximum flexibility. The paper introduces applied design research with case studies that test robotic weaving on an architectural ceiling. The second part contextualises the presented work by linking it to workspace scenarios and an on-site robotic process with a resulting data distribution that is designed to produce degrees of freedom for high flexibility in use, allowing occupants to organise the workspace layout autonomously so that workflow constellations in different teams can be adequately expressed through space. The paper concludes with a discussion of a framework for robotic methods developed for the carbon-fibre overhead weaving processes, followed by conclusions and outlook towards future potentials.
keywords open collaborative workspace; robotic onsite weaving; carbon fiber; integrated ceiling systems
series CAADRIA
last changed 2018/05/17 07:07

_id ijac201614104
id ijac201614104
authors Wood, Dylan Marx; David Correa, Oliver David Krieg and Achim Menges
year 2016
title Material computation—4D timber construction: Towards building-scale hygroscopic actuated, self-constructing timber surfaces
source International Journal of Architectural Computing vol. 14 - no. 1, 49-62
summary The implementation of active and responsive materials in architecture and construction allows for the replacement of digitally controlled mechanisms with material-based systems that can be designed and programmed with the capacity to compute and execute a behavioral response. The programming of such systems with increasingly specific response requires a material-driven computational design and fabrication strategy. This research presents techniques and technologies for significantly upscaling hygroscopically actuated timber-based systems for use as self-constructing building surfaces. The timber’s integrated hygroscopic characteristics combined with computational design techniques and existing digital fabrication methods allow for a designed processing and reassembly of discrete wood elements into large-scale multi element bilayer surfaces. This material assembly methodology enables the design and control of the encoded direction and magnitude of humidity-actuated responsive curvature at an expanded scale. Design, simulation, and material assembly tests are presented together with formal and functional configurations that incorporate self-constructing and self-rigidizing surface strategies. The presented research and prototypes initiate a shift toward a large-scale, self-construction methodology.
keywords Hygroscopic, self-forming, computational design, autonomous actuation, wood structures
series journal
last changed 2016/06/13 06:34

No more hits.

HOMELOGIN (you are user _anon_22202 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002