CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 3 of 3

_id ecaade2015_207
id ecaade2015_207
authors Jackson, Ole Egholm and Pedersen, Jens Egholm
year 2015
title Introducing RepoCad - A prototype of the Internet of Digital Design
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 1, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 149-157
summary Based on a state of the art analysis of computational design technologies and collaborative software development practises, this paper proposes a synthesis of existing strategies in an Internet of Digital Design. This paper introduces the experimental design platform RepoCad, which consists of three elements: a simplified scripting language, an online library and a drawing interface. The result is an online platform where tools, design processes and design results are accessible and editable from a web browser.
wos WOS:000372317300016
series eCAADe
email Ole.Egholm.Jackson@aarch.dk
more https://mh-engage.ltcc.tuwien.ac.at/engage/ui/watch.html?id=d6d7c7f6-702c-11e5-a1ab-ab30aab46c00
last changed 2016/05/16 09:08

_id acadia12_209
id acadia12_209
authors Larsen, Niels Martin ; Pedersen, Ole Egholm ; Pigram, Dave
year 2012
title A Method for the Realization of Complex Concrete Gridshell Structures in Pre-Cast Concrete
source ACADIA 12: Synthetic Digital Ecologies [Proceedings of the 32nd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-62407-267-3] San Francisco 18-21 October, 2012), pp. 209-216
summary This paper describes a method for the design and fabrication of complex funicular structures fromdiscrete precast concrete elements. The research proposes that through the integration of digitalform-finding techniques, computational file-to-fabrication workflows, and innovative sustainableconcrete casting techniques, complex funicular structures can be constructed using prefabricatedelements in a practical, affordable, and materially efficient manner.A recent case study is examined, in which the methodology has been used to construct a pavilion.Custom-written dynamic relaxation software was used to define the overall form and successivealgorithms; it then defined each componentís unique geometry, unrolled into flat shapes, andnested all parts into cut-files. PETG plastic sheets were two-dimensionally laser cut and folded toproduce the unique casting molds. The case study was carried out in collaboration between theAarhus School of Architecture and the University of Technology, Sydney (UTS). Basic research incasting techniques defined the framework for the design process, and a custom-written dynamicrelaxation software application became the primary form-generating tool in the design process ofa constructed pavilion. Fabrication and construction constraints were embedded within the designof both the overall structure and its components. Finite element analysis [FEA] was completed inorder to verify the form-finding results, to ensure structural stability, and to direct adjustments ofthe structure during the design process.The constructed pavilion case study, constructed in a very short time, for low cost and with relativelyunskilled labor, demonstrates that the integration of algorithmic form-finding techniques, CNCfabrication workflows, and the use of innovative PETG folded-mold techniques enables thepractical realization of freeform funicular structures in precast concrete.
keywords Gridshells , pre-cast concrete , folded moulds , dynamic relaxation , file-to-factory , form-finding , parametric modeling , computational design , zero-waste production
series ACADIA
type normal paper
email niels.martin.larsen@aarch.dk
last changed 2013/01/09 10:06

_id acadia14_375
id acadia14_375
authors Maxwell, Iain; Pigram, David; Egholm-Pedersen, Ole
year 2014
title Fabrication Aware Form-Finding: A Combined Quasi-Reciprocal Timber and Discontinious Post-tensioned Concrete Structure
source ACADIA 14: Design Agency [Proceedings of the 34th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 9781926724478]Los Angeles 23-25 October, 2014), pp. 375-383
summary This paper describes innovations in fabrication-aware form-finding applied to two novel construction methods: one for quasi-reciprocal timber frames, the other for post-tensioned precast concrete structures. A pavilion which applies all innovations serves as a case study.
keywords Fabrication-aware form-finding, precast concrete, reciprocal frame, multi-axis timber construction, material logics and tectonics, digital fabrication
series ACADIA
type Normal Paper
email maxi@supermanoeuvre.com
last changed 2014/09/29 05:51

No more hits.

HOMELOGIN (you are user _anon_45431 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002