CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers

Hits 1 to 2 of 2

_id ddss9829
id ddss9829
authors De Hoog, J., Hendriks, N.A. and Rutten, P.G.S.
year 1998
title Evaluating Office Buildings with MOLCA(Model for Office Life Cycle Assessment)
source Timmermans, Harry (Ed.), Fourth Design and Decision Support Systems in Architecture and Urban Planning Maastricht, the Netherlands), ISBN 90-6814-081-7, July 26-29, 1998
summary MOLCA (Model for Office Life Cycle Assessment) is a project that aims to develop a tool that enables designers and builders to evaluate the environmental impact of their designs (of office buildings) from a environmental point of view. The model used is based on guidelinesgiven by ISO 14000, using the so-called Life Cycle Assessment (LCA) method. The MOLCA project started in 1997 and will be finished in 2001 resulting in the aforementioned tool. MOLCA is a module within broader research conducted at the Eindhoven University of Technology aiming to reduce design risks to a minimum in the early design stages.Since the MOLCA project started two major case-studies have been carried out. One into the difference in environmental load caused by using concrete and steel roof systems respectively and the role of recycling. The second study focused on biases in LCA data and how to handle them. For the simulations a computer-model named SimaPro was used, using the world-wide accepted method developed by CML (Centre for the Environment, Leiden, the Netherlands). With this model different life-cycle scenarios were studied and evaluated. Based on those two case studies and a third one into an office area, a first model has been developed.Bottle-neck in this field of study is estimating average recycling and re-use percentages of the total flow of material waste in the building sector and collecting reliable process data. Another problem within LCA studies is estimating the reliability of the input data and modelling uncertainties. All these topics will be subject of further analysis.
keywords Life-Cycle Assessment, Office Buildings, Uncertainties in LCA
series DDSS
last changed 2003/08/07 14:36

_id ddss9498
id ddss9498
authors Vriens, Dirk and Hendriks, Paul
year 1994
title Functionally Defining Systems: A Systems Theory Approach to Decision Support
source Second Design and Decision Support Systems in Architecture & Urban Planning (Vaals, the Netherlands), August 15-19, 1994
summary Research into decision making seems to suffer from two related weaknesses. The first is lack of attention for the dynamic nature of the decision process and environment. Research attempts to encompass dynamic features are sparse. The second weakness is the allegation that decision alternatives can be discerned on an a priori basis, thus facilitating the use of a choice rule to pick the 'optimal' or 'satisficing' alternative (this is the basic assumption of the prevailing rationalistic approach of decision modelling). However, the assumption of an a priori conception of alterna-tives is not realistic, since it ignores the fact that the exploration and elaboration of alternatives forms an integral part of the decision process. Although several attempts have been made to overcome these problems, a coherent theory seems to be lacking. This paper explores the possibilities of systems theory as an offset for new decision modelling. A system (in the cybernet-ic sense) is, roughly speaking, a collection of elements related in such a manner that emergent properties (i.e., properties that consist the level of the whole, not at the level of its parts) come about. There are many different approaches to systems theory and not all of these are equally useful for decision research. For our purposes, systems that have 'adaptive' properties are worthwhile because they may encompass dynamic features. Furthermore, the use of adaptive, dynamic systems leads to a solution for the problem of the 'disembodied' conception and choice of alternatives, since the choice options automatically follow from the defined system and may change because of its dynamic nature. The important question is how a system can be defined in order to capture the dynamic nature of decision making. In order to answer this question, the paper starts with a short overview of problems with traditional modelling in decision making and systems theory. Next, it will be argued that the crux of defining systems that capture dynamics is to define them 'functionally', i.e. regarding the goals that enter the decision process. An outline of a method to do this will be given. In the last part, the consequences for computerized decision support will be stated.
series DDSS
last changed 2003/08/07 14:36

No more hits.

HOMELOGIN (you are user _anon_747783 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002