CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers

Hits 1 to 7 of 7

_id a27c
authors Hue, F., Serrano, G. and Bolaño, J.A.
year 2000
title Oeresund Bridge. Temperature and cracking control of the deck slab concrete at early ages
source Automation in Construction 9 (5-6) (2000) pp. 437-445
summary High performance features are required of the concrete for the deck slab of the bridge over Öresund Straight between Denmark and Sweden and, among them, great durability. To guarantee this, it is necessary to assure, in advance, and control during the construction of the deck slabs, that the maximum temperatures and the traction stresses in the deck slab will not be greater than the allowable values, and to control these factors during the construction process. Before beginning construction, the deck slab was calculated using a program of finite elements that considers the heat generated, the shrinkage and creep of the concrete and the ambient conditions. To control the temperature during construction, temperature sensors are installed in various sections of each of the 49 deck spans and the temperatures produced during the first days of hardening are recorded on a computer. The temperatures of the components are also measured in order to estimate the temperature of the fresh concrete.
series journal paper
last changed 2003/05/15 19:22

_id caadria2005_b_5c_g
id caadria2005_b_5c_g
authors Hue-Ku Shih
year 2005
title Social Events Awareness System in Design Environment: An Interactive Public Information Services Provider
source CAADRIA 2005 [Proceedings of the 10th International Conference on Computer Aided Architectural Design Research in Asia / ISBN 89-7141-648-3] New Delhi (India) 28-30 April 2005, vol. 2, pp. 404-410
summary This paper is an application of its main project, “Interactive Public Information Services Provider in Design Environment”. The project is based on the ID sensing technology and network services to support the social events, formal/informal communication and data communication…etc. In the paper we emphasize on how we can support social events in pervasive computing method. An architect indicates that informal communication is the key of creative ideas in design environment. (Henn, 2002) Here we describe how the concept of the main project can support the awareness of social events in design environment. We introduce the awareness system into three parts: 1. Scenarios 2. Parts in the framework 3. The design issues in the system.
series CAADRIA
last changed 2005/04/30 01:30

_id ecaadesigradi2019_652
id ecaadesigradi2019_652
authors Lee, Hyunsoo, Kim, Daseul and Hwang, Jihyoun
year 2019
title Color Harmony Integration-driven Design Process for Aesthetic Village
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 1, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 757-764
summary This paper describes the color design process of the house in the village. The color design process proposed in this paper constitutes design stages such as color selection, color application, and color design analysis and evaluation. In the color selection step, a method of arranging colors using a color pallet or a color scheme is described. The color application stage includes the process of creating a village color design alternatives by specifying the color information of the hue, value, and saturation based on the BIM model. The color analysis stage is to numerically identify the color design attributes of the generated color design alternatives. The reason for color analysis and evaluation is to produce various design alternatives with the color harmony and improve the quality of the design.
keywords Color Palette; Environmental Color; Color Harmony; Color Scheme; Color Design Analysis
series eCAADeSIGraDi
last changed 2019/08/26 20:26

_id 2005_723
id 2005_723
authors Norman, Richard
year 2005
title Digital Color as a Paradigm for 3D Modeling
source Digital Design: The Quest for New Paradigms [23nd eCAADe Conference Proceedings / ISBN 0-9541183-3-2] Lisbon (Portugal) 21-24 September 2005, pp. 723-728
summary Johannes Itten wrote in the 1920’s that seven distinct possibilities exist for the contrast of color: “Each (is) unique in character and artistic value, in visual, expressive and symbolic effect...together these constitute the fundamental resource of color design” Itten (1973). In either the digital world or in the world of painting, there has never been a more profound statement about color arrangement. Of Itten’s seven contrasts, the contrast of hue, value, and saturation, taken together have become a standard description of digital color today. As most projects reach the final stage of presentation, color selection becomes a possible paradigm for their development. It is customary to leave the selection of color to the end of a project — if time permits, then the colors are changed to make the project “appear better”, otherwise the selection of color is put in a pile of “good intentions” — overlooked. Proposed here is an alternative, a method of selecting color “up front”. Student projects are used to illustrate just how a building, or even a group of buildings may be better illustrated if one bases a presentation on a successful and understood work of art. The use of a painting as a source of color is proposed as a specific way of working. Most libraries contain an abundance of examples. The web, too, has many paintings; painters generally have more experience at putting colors together than architects and usually do not mind if their color ideas are borrowed, Done right, the result can be a happy merger of idea, emotion, and color, providing another paradigm for studying digital modeling.
keywords Color ; Painting ; Itten ; Design
series eCAADe
last changed 2012/11/23 18:17

_id 2006_566
id 2006_566
authors Rafi, Ahmad; Mohamad Izani Zainal Abidin; Avijit Paul and Aishah Abdul Razak
year 2006
title Simulation of architectural lighting in a virtual environment - A case study on real and fake High Dynamic Range Images (HDRI)
source Communicating Space(s) [24th eCAADe Conference Proceedings / ISBN 0-9541183-5-9] Volos (Greece) 6-9 September 2006, pp. 566-572
summary The early findings of this research were presented in eCAADe 2005 International Conference, Lisbon primarily to highlight the concept of High Dynamic Range Images (HDRI) when representing architectural spaces in the form of still images. An experiment had been carried out to compare the results between HDRI rendering and ‘conventional’ lighting simulation algorithms namely ray tracing and radiosity. The results were based on static and using the same exposure factors, when capturing HDRI. This project, funded by Intensification Research Priority Area (IRPA) grant continues to present and report HDRI results in a simulation environment. In this paper, we first briefly explain on the concept of real and fake HDRI. Then a comparison experiment is conducted to compare these two methods and discuss the impact and effectiveness of the illumination computation in architectural simulation environment. In order to carry out the experiment, a few models of the architectural scenes were developed. These models were then textured with real photos and manipulated with ‘shaders’, and further rendered using fake and real HDRI techniques. As for the fake HDRI, two methods were developed. The first was using an image as the ambient map and different exposures were created by increasing the value of Hue, V of HSV and saturation. The second involved a series of digital photos with the selection of the brightest and darkest area using Adobe Photoshop to establish the scale of luminosity. A few camera movements were triggered and position for ‘real-time’ rendering simulation. The result of the experiment has shown a significant improvement on the rendering time and quality of the rendering. Finally this paper suggests the selection criteria for choosing real and fake HDRI, and how each technique can be best utilized for architectural representations in a simulation environment.
keywords HDRI; simulation; Real HDRI;Fake HDRI; illumination computation
series eCAADe
last changed 2006/08/16 16:54

_id ga0026
id ga0026
authors Ransen, Owen F.
year 2000
title Possible Futures in Computer Art Generation
source International Conference on Generative Art
summary Years of trying to create an "Image Idea Generator" program have convinced me that the perfect solution would be to have an artificial artistic person, a design slave. This paper describes how I came to that conclusion, realistic alternatives, and briefly, how it could possibly happen. 1. The history of Repligator and Gliftic 1.1 Repligator In 1996 I had the idea of creating an “image idea generator”. I wanted something which would create images out of nothing, but guided by the user. The biggest conceptual problem I had was “out of nothing”. What does that mean? So I put aside that problem and forced the user to give the program a starting image. This program eventually turned into Repligator, commercially described as an “easy to use graphical effects program”, but actually, to my mind, an Image Idea Generator. The first release came out in October 1997. In December 1998 I described Repligator V4 [1] and how I thought it could be developed away from simply being an effects program. In July 1999 Repligator V4 won the Shareware Industry Awards Foundation prize for "Best Graphics Program of 1999". Prize winners are never told why they won, but I am sure that it was because of two things: 1) Easy of use 2) Ease of experimentation "Ease of experimentation" means that Repligator does in fact come up with new graphics ideas. Once you have input your original image you can generate new versions of that image simply by pushing a single key. Repligator is currently at version 6, but, apart from adding many new effects and a few new features, is basically the same program as version 4. Following on from the ideas in [1] I started to develop Gliftic, which is closer to my original thoughts of an image idea generator which "starts from nothing". The Gliftic model of images was that they are composed of three components: 1. Layout or form, for example the outline of a mandala is a form. 2. Color scheme, for example colors selected from autumn leaves from an oak tree. 3. Interpretation, for example Van Gogh would paint a mandala with oak tree colors in a different way to Andy Warhol. There is a Van Gogh interpretation and an Andy Warhol interpretation. Further I wanted to be able to genetically breed images, for example crossing two layouts to produce a child layout. And the same with interpretations and color schemes. If I could achieve this then the program would be very powerful. 1.2 Getting to Gliftic Programming has an amazing way of crystalising ideas. If you want to put an idea into practice via a computer program you really have to understand the idea not only globally, but just as importantly, in detail. You have to make hard design decisions, there can be no vagueness, and so implementing what I had decribed above turned out to be a considerable challenge. I soon found out that the hardest thing to do would be the breeding of forms. What are the "genes" of a form? What are the genes of a circle, say, and how do they compare to the genes of the outline of the UK? I wanted the genotype representation (inside the computer program's data) to be directly linked to the phenotype representation (on the computer screen). This seemed to be the best way of making sure that bred-forms would bare some visual relationship to their parents. I also wanted symmetry to be preserved. For example if two symmetrical objects were bred then their children should be symmetrical. I decided to represent shapes as simply closed polygonal shapes, and the "genes" of these shapes were simply the list of points defining the polygon. Thus a circle would have to be represented by a regular polygon of, say, 100 sides. The outline of the UK could easily be represented as a list of points every 10 Kilometers along the coast line. Now for the important question: what do you get when you cross a circle with the outline of the UK? I tried various ways of combining the "genes" (i.e. coordinates) of the shapes, but none of them really ended up producing interesting shapes. And of the methods I used, many of them, applied over several "generations" simply resulted in amorphous blobs, with no distinct family characteristics. Or rather maybe I should say that no single method of breeding shapes gave decent results for all types of images. Figure 1 shows an example of breeding a mandala with 6 regular polygons: Figure 1 Mandala bred with array of regular polygons I did not try out all my ideas, and maybe in the future I will return to the problem, but it was clear to me that it is a non-trivial problem. And if the breeding of shapes is a non-trivial problem, then what about the breeding of interpretations? I abandoned the genetic (breeding) model of generating designs but retained the idea of the three components (form, color scheme, interpretation). 1.3 Gliftic today Gliftic Version 1.0 was released in May 2000. It allows the user to change a form, a color scheme and an interpretation. The user can experiment with combining different components together and can thus home in on an personally pleasing image. Just as in Repligator, pushing the F7 key make the program choose all the options. Unlike Repligator however the user can also easily experiment with the form (only) by pushing F4, the color scheme (only) by pushing F5 and the interpretation (only) by pushing F6. Figures 2, 3 and 4 show some example images created by Gliftic. Figure 2 Mandala interpreted with arabesques   Figure 3 Trellis interpreted with "graphic ivy"   Figure 4 Regular dots interpreted as "sparks" 1.4 Forms in Gliftic V1 Forms are simply collections of graphics primitives (points, lines, ellipses and polygons). The program generates these collections according to the user's instructions. Currently the forms are: Mandala, Regular Polygon, Random Dots, Random Sticks, Random Shapes, Grid Of Polygons, Trellis, Flying Leap, Sticks And Waves, Spoked Wheel, Biological Growth, Chequer Squares, Regular Dots, Single Line, Paisley, Random Circles, Chevrons. 1.5 Color Schemes in Gliftic V1 When combining a form with an interpretation (described later) the program needs to know what colors it can use. The range of colors is called a color scheme. Gliftic has three color scheme types: 1. Random colors: Colors for the various parts of the image are chosen purely at random. 2. Hue Saturation Value (HSV) colors: The user can choose the main hue (e.g. red or yellow), the saturation (purity) of the color scheme and the value (brightness/darkness) . The user also has to choose how much variation is allowed in the color scheme. A wide variation allows the various colors of the final image to depart a long way from the HSV settings. A smaller variation results in the final image using almost a single color. 3. Colors chosen from an image: The user can choose an image (for example a JPG file of a famous painting, or a digital photograph he took while on holiday in Greece) and Gliftic will select colors from that image. Only colors from the selected image will appear in the output image. 1.6 Interpretations in Gliftic V1 Interpretation in Gliftic is best decribed with a few examples. A pure geometric line could be interpreted as: 1) the branch of a tree 2) a long thin arabesque 3) a sequence of disks 4) a chain, 5) a row of diamonds. An pure geometric ellipse could be interpreted as 1) a lake, 2) a planet, 3) an eye. Gliftic V1 has the following interpretations: Standard, Circles, Flying Leap, Graphic Ivy, Diamond Bar, Sparkz, Ess Disk, Ribbons, George Haite, Arabesque, ZigZag. 1.7 Applications of Gliftic Currently Gliftic is mostly used for creating WEB graphics, often backgrounds as it has an option to enable "tiling" of the generated images. There is also a possibility that it will be used in the custom textile business sometime within the next year or two. The real application of Gliftic is that of generating new graphics ideas, and I suspect that, like Repligator, many users will only understand this later. 2. The future of Gliftic, 3 possibilties Completing Gliftic V1 gave me the experience to understand what problems and opportunities there will be in future development of the program. Here I divide my many ideas into three oversimplified possibilities, and the real result may be a mix of two or all three of them. 2.1 Continue the current development "linearly" Gliftic could grow simply by the addition of more forms and interpretations. In fact I am sure that initially it will grow like this. However this limits the possibilities to what is inside the program itself. These limits can be mitigated by allowing the user to add forms (as vector files). The user can already add color schemes (as images). The biggest problem with leaving the program in its current state is that there is no easy way to add interpretations. 2.2 Allow the artist to program Gliftic It would be interesting to add a language to Gliftic which allows the user to program his own form generators and interpreters. In this way Gliftic becomes a "platform" for the development of dynamic graphics styles by the artist. The advantage of not having to deal with the complexities of Windows programming could attract the more adventurous artists and designers. The choice of programming language of course needs to take into account the fact that the "programmer" is probably not be an expert computer scientist. I have seen how LISP (an not exactly easy artificial intelligence language) has become very popular among non programming users of AutoCAD. If, to complete a job which you do manually and repeatedly, you can write a LISP macro of only 5 lines, then you may be tempted to learn enough LISP to write those 5 lines. Imagine also the ability to publish (and/or sell) "style generators". An artist could develop a particular interpretation function, it creates images of a given character which others find appealing. The interpretation (which runs inside Gliftic as a routine) could be offered to interior designers (for example) to unify carpets, wallpaper, furniture coverings for single projects. As Adrian Ward [3] says on his WEB site: "Programming is no less an artform than painting is a technical process." Learning a computer language to create a single image is overkill and impractical. Learning a computer language to create your own artistic style which generates an infinite series of images in that style may well be attractive. 2.3 Add an artificial conciousness to Gliftic This is a wild science fiction idea which comes into my head regularly. Gliftic manages to surprise the users with the images it makes, but, currently, is limited by what gets programmed into it or by pure chance. How about adding a real artifical conciousness to the program? Creating an intelligent artificial designer? According to Igor Aleksander [1] conciousness is required for programs (computers) to really become usefully intelligent. Aleksander thinks that "the line has been drawn under the philosophical discussion of conciousness, and the way is open to sound scientific investigation". Without going into the details, and with great over-simplification, there are roughly two sorts of artificial intelligence: 1) Programmed intelligence, where, to all intents and purposes, the programmer is the "intelligence". The program may perform well (but often, in practice, doesn't) and any learning which is done is simply statistical and pre-programmed. There is no way that this type of program could become concious. 2) Neural network intelligence, where the programs are based roughly on a simple model of the brain, and the network learns how to do specific tasks. It is this sort of program which, according to Aleksander, could, in the future, become concious, and thus usefully intelligent. What could the advantages of an artificial artist be? 1) There would be no need for programming. Presumbably the human artist would dialog with the artificial artist, directing its development. 2) The artificial artist could be used as an apprentice, doing the "drudge" work of art, which needs intelligence, but is, anyway, monotonous for the human artist. 3) The human artist imagines "concepts", the artificial artist makes them concrete. 4) An concious artificial artist may come up with ideas of its own. Is this science fiction? Arthur C. Clarke's 1st Law: "If a famous scientist says that something can be done, then he is in all probability correct. If a famous scientist says that something cannot be done, then he is in all probability wrong". Arthur C Clarke's 2nd Law: "Only by trying to go beyond the current limits can you find out what the real limits are." One of Bertrand Russell's 10 commandments: "Do not fear to be eccentric in opinion, for every opinion now accepted was once eccentric" 3. References 1. "From Ramon Llull to Image Idea Generation". Ransen, Owen. Proceedings of the 1998 Milan First International Conference on Generative Art. 2. "How To Build A Mind" Aleksander, Igor. Wiedenfeld and Nicolson, 1999 3. "How I Drew One of My Pictures: or, The Authorship of Generative Art" by Adrian Ward and Geof Cox. Proceedings of the 1999 Milan 2nd International Conference on Generative Art.
series other
last changed 2003/08/07 15:25

_id cd68
authors Szalapaj, Peter J. and Tang, Songlan
year 1994
title Giving Colour to Contextual Hypermedia
source The Virtual Studio [Proceedings of the 12th European Conference on Education in Computer Aided Architectural Design / ISBN 0-9523687-0-6] Glasgow (Scotland) 7-10 September 1994, pp. 191-200
summary Design development evolves within design contexts that require expression as much as the design itself, and these contexts often constrain any presentation in ways that are not usually explicitly thought of. The context of a design object will therefore influence the conceptual ways of thinking about and presenting this object. Support in hypermedia applications for the expression of the colour context, therefore, should be based upon sound theoretical principles to ensure the effective communication of design ideas. Johannes Itten has postulated seven ways to communicate visual information by means of colour contrast effects, each of which is unique in character, artistic value, and symbolic effect. Of these seven contrasting effects, three are in terms of the nature of colour itself: hue, brightness, and saturation. Although conventional computer graphics applications support the application of these colour properties to discrete shapes, they give no analysis of contrasting colour relationships between shapes. The proposed system attempts to overcome this deficiency. The remaining four contrast effects concern human psychology and psychophysics, and are not supported at all in computer graphics applications. These include the cold-warm contrast, simultaneous contrast, complementary contrast, and the contrast of extension. Although contrast effects are divided into the above seven aspects, they are also related to one another. Thus, when the hue contrast works, the light-dark contrast and cold-warm contrast must work at the same time. Computational support for these colour effects form the focus of this paper.
series eCAADe
last changed 1998/09/14 07:48

No more hits.

HOMELOGIN (you are user _anon_959136 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002