CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 10 of 10

_id caadria2016_507
id caadria2016_507
authors Choi, Jungsik; Inhan Kim and Jiyong Lee
year 2016
title Development of schematic estimation system through linking QTO with Cost DB
source Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016) / Melbourne 30 March–2 April 2016, pp. 507-516
summary Cost estimate in architectural projects is an important factor for decision-making and financing the project in both early design phase and detailed design phase. In Korea, estimate work based on 2D drawing has generated problems of difference form QTO according to worker’s mistake and know-how. In addition, 2D-based estimation are obtained uncertainty factors of estimation depending on lack of infor- mation due to becoming larger and more complex than any other pro- ject of the architectural project. In order to solve limitations, this study is to suggest an open BIM-based schematic estimation process and a prototype system within the building frame through linking QTO and cost information. This study consists of the following steps: 1) Ana- lysing Level of Detail (LoD) to apply to the process and system, 2) BIM modelling for open BIM-based QTO, 3) Verifying the quality of the BIM model, 4) Developing a schematic estimation prototype sys- tem. This study is expected to improve work efficiency as well as reli- ability of construction cost.
keywords Cost DB; Industry Foundation Classes (IFC); Open Building Information Modelling (BIM); schematic estimation; Quantity Take-Off (QTO)
series CAADRIA
email jungsikchoi@khu.ac.kr
last changed 2016/03/11 09:21

_id caadria2015_067
id caadria2015_067
authors Choi, Jungsik; Minchan Kim and Inhan Kim
year 2015
title A Methodology of Mapping Interface for Energy Performance Assessment Based on Open BIM
source Emerging Experience in Past, Present and Future of Digital Architecture, Proceedings of the 20th International Conference of the Association for Computer-Aided Architectural Design Research in Asia (CAADRIA 2015) / Daegu 20-22 May 2015, pp. 417-426
summary Early design phase energy modelling is used to provide the design team with feedback about the impact of various building configurations. For better energy-conscious and sustainable building design and operation, the construction of BIM data interoperability for energy performance assessment in the early design phase is important. The purpose of this study is to suggest a development of BIM data interoperability for energy performance assessment based on BIM. To archive this, the authors have investigated advantages of BIM-based energy performance assessment through comparison with traditional energy performance assessment; and suggest requirements for development of Open BIM environment such as BIM data creation and BIM data application. In addition, the authors also suggested on BIM data interoperability system and developed mapping interface.
keywords Building Information Modelling (BIM); Energy Performance Assessment (EPA); Data Interoperability; Energy Property; Industry Foundation Classes (IFC).
series CAADRIA
email jungsikchoi@gmail.com
last changed 2015/06/05 05:14

_id caadria2019_404
id caadria2019_404
authors Hyejin, Park, Hyeongmo, Gu, Woojun, Lee, Inhan, Kim and Seungyeon, Choo
year 2019
title A Development of KBIMS-based Building Design Quality Evaluation and Performance Review Interface
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 1, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 747-756
summary Recently, The South Korean national government and local governments in Korea are pursuing national R & D tasks that can be used in the design stage to expand the BIM technology to the public environment of the future city, such as the construction of the IT integrated architecture design environment and the convenient construction administrative system environment. Among these R & D researches, various studies are continuing to provide more convenient and accurate architectural services at the licensing stage in order to promote the introduction and practical use of BIM in the Korean construction industry. Typical examples are BIM-based building design quality evaluation and building performance review technology development. Therefore, the goal of this study is to introduce the case of developing the performance review interface according to the regulation and required performance criterion of BIM model using KBIMS and analyze the possibility of evaluating building design quality by applying this to a practical project.
keywords OpenBIM; Design Automation; Performance Review; Design Quality; Legal Review
series CAADRIA
email gpwls3143@gmail.com
last changed 2019/04/16 08:25

_id b9c4
authors Kim, Inhan
year 1994
title Data representations in an integrated architectural design environment
source University of Strathclyde, Dept. of Architecture and Building Science
summary The architectural design process is very complex and involves cross-disciplinary communication among many related fields. Given the further problems arising from the technological advances in building materials and construction methods, an integrated design environment becomes a central design issue. There have been many attempts to analyse and structure the design process as a uniform hierarchical framework. Most of the attempts resulted in a vague and inappropriate outcome due to the lack of understanding of architectural design complexity and inconsistent design data control sequence. A design problem cannot be comprehensively stated because the design problem has a multi-disciplinary nature and the design problem itself evolves as solutions are attempted by the designer. Therefore, an ideal CAAD system should have the capability to accommodate the multi-disciplinary nature of design and should not prescribe or restrict design concepts and design knowledge. A well designed integrated design environment provides more information and invokes creative imagination for each design stage, and therefore creative decision making by the designer can be achieved. This thesis proposes a prototype architectural design environment, Hybrid Integrated Design Environment [HIDE], which aims to integrate all applications for designing a building. Within the object-oriented design environment, a unified data model and a data management system have been implemented to seamlessly connect all applications. Development of the environment needs to consider the fundamental interaction between each module. Devising a data structure that is appropriate to an effective data communication among the various design stages is essential in a totally integrated CAAD system. The suggested unified data model organizes the structure of the design data to keep the design consistent throughout the design and construction process. By means of the unified data model, integrated CAAD systems could represent and exchange design information at a semantic level, i.e. the user’s way of thinking, such as exchanging components and features of a building rather than graphical primitives. In consequence, the unified data model reduces the misunderstandings and communication problems among the multiple disciplines of architectural design. The suggested data management system supports the consistent and straight forward mechanisms for controlling the data representation through the inter-connected modules. It is responsible for creating, maintaining, and viewing a consistent database of the design description. It also helps to perform effective data communication among the various design stages to ensure quality and time saving in the final construction of the building. To support inter-disciplinary communication of design concepts and decisions, the integrating of relevant CAAD tools is essential. In the environment, the integration of CAAD tools has been performed on the basis of how well computerized design tools can assist designers to develop better solutions, enabling them to manipulate and appraise varying solutions quickly and with a minimum of effort in an environment conducive to creative design. A well designed user interface system can also benefit the seamless working environment. The proposed user friendly interface system allows a user to explore the environment in a highly interactive manner. From the development of the early data model to the final design, a user could benefit from the prototypes and methods of the user interface system. The ultimate goal of the prototype environment is to suggest a future design environment which helps the architect to have minimum discontinuity in his creativity and make the design process similar to the natural design process with the help of a set of design assistance modules. A prototype version of HIDE has been implemented and a demonstration of the environment is part of this thesis.
series thesis:PhD
email ihkim@khu.ac.kr
last changed 2003/02/12 21:37

_id a0e2
authors Kim, Inhan and Liebich, Thomas
year 1995
title Representations and Control of Design Information in an Integrated CAAD Environment
source Sixth International Conference on Computer-Aided Architectural Design Futures [ISBN 9971-62-423-0] Singapore, 24-26 September 1995, pp. 125-138
summary This paper investigates the mechanisms by which effective data communication between the various design stages and design actors may be facilitated in an Integrated Design Environment. The design team would then be able to cooperate efficiently and easily predict the performance of buildings, thus improving the quality of the design. Within the proposed prototype design environment, a core data model and a data management system have been implemented to connect all applications seamlessly. The core data model supports semantically meaningful descriptions of buildings. The data management system supports consistent and straightforward mechanisms for controlling the data representation through interconnected modules. An existing building is used to test the integration capability of the implemented system.###Product Modelling,.Object-Oriented Database System
series CAAD Futures
email liebich@uumail.de
last changed 2003/05/16 18:58

_id a43d
authors Kim, Inhan
year 1994
title Unified Data Organization and Management in an Integrated Design Environment
source The Virtual Studio [Proceedings of the 12th European Conference on Education in Computer Aided Architectural Design / ISBN 0-9523687-0-6] Glasgow (Scotland) 7-10 September 1994, pp. 254
summary The architectural design process is very complex and it is not easily confined to a single design environment. As the design process gets more complex due to the technological advances in building materials and construction methods, an integrated design system becomes a central design issue. To have an integrated design system, all applications should be integrated in a unified environment within which there should be a data structure to facilitate an effective data communication among the various design stages and data control facility to seamlessly connect all these applications. A primary purpose of this work is to suggest an object oriented architectural design environment for the essential part of the seamless environment for designing a building. Within the object-oriented design environment, a unified data model and detailed data control module have been implemented to seamlessly connect all these applications. The unified data model organizes the structure of the design data to keep the design consistent throughout the design and construction process. It also helps to do effective data communication among the various design stages to ensure quality and time saving in the final construction of the building. The data management module supports the consistent and easy mechanisms in controlling the data representation through the inter-connected modules. It is also responsible for creating, maintaining, and viewing a consistent database of the design description. In the suggested design environment, each architectural element partially describes the model and individual elements are aggregated hierarchically. Some parts of the projection are defined and other can be inherited from above. Also, creation of an improved or new design element can easily be accommodated in the environment. The integrated database in the suggested environment is the basis by which design data can be shared among the design tools of the design environment. The database organizes the design description within each representation, correlates equivalent descriptions across the representations, and attempts to maintain these correspondences as the design incrementally evolves.

series eCAADe
last changed 1998/09/14 14:16

_id 418a
authors Kim, Inhan
year 1996
title A Design System for Concurrent Reuse of Architectural Data
source CAADRIA ‘96 [Proceedings of The First Conference on Computer Aided Architectural Design Research in Asia / ISBN 9627-75-703-9] Hong Kong (Hong Kong) 25-27 April 1996, pp. 163-172
summary This paper describes a design system which supports the concurrent re-use of existing design information by means of an object-oriented database system. The system manages component versioning within a flexible design environment which is to be used by a design team working on an evolving, complex design. A database of prototype designs has been built with a database system that supports versioning. The basic database operations are then extended with the routines that support inter-designer communication. The database system with these extensions produces a design environment in which designers using partitioned design databases holding multiple design component versions, may concurrently develop new designs. In addition, an expert system shell has been incorporated to deal with design evaluation processes. In this paper, the authors investigate the mechanisms by which existing design versions may be represented, combined and edited to provide new designs.
series CAADRIA
email ihkim@khu.ac.kr
last changed 2003/05/17 07:54

_id 02f7
authors Liebich, Thomas and Kim, Inhan
year 1995
title ID'EST: An Integrated Modelling Framework for Management of Architectural Data
source Sixth International Conference on Computer-Aided Architectural Design Futures [ISBN 9971-62-423-0] Singapore, 24-26 September 1995, pp. 377-387
summary An Integrated Design Environment, IDE, facilitates cooperation between different disciplines. The paper investigates the data modelling framework, distinguishes between homogeneous and heterogeneous model worlds, discusses the formal mapping mechanisms available to establish a heterogeneous model world, and introduces a way to incorporate CAD systems into IDE A prototype IDE has been developed to prove these methods. The ID'EST prototype comprises its own core data model, different schemas to cope with several design views, and interfaces to incorporate external CAD systems. A prototype architectural data model has been defined, that includes core data models and aspect models for enclosure system and spatial system. Conventional CAD systems can be integrated into ID'EST, if they are able to map data from the aspect models into their own data structure, and vice versa, on a high semantic level. The inherent methods of classifying data in CAD, layers, macros and attached attributes, have been used to retrieve product data from CAD data files. The usability of conventional CAD systems as data instantiation tools for IDE has been proved and a path has been shown, by which existing tools can be integrated into new technology solutions.
keywords Product Modelling, Formal Mapping Specification, Computer-Aided Design
series CAAD Futures
email liebich@uumail.de
last changed 2003/05/16 18:58

_id cf2015_382
id cf2015_382
authors Shin, Jihye; Choi, Jungsik and Kim, Inhan
year 2015
title Development of BIM performance measurement system for architectural design firms
source The next city - New technologies and the future of the built environment [16th International Conference CAAD Futures 2015. Sao Paulo, July 8-10, 2015. Electronic Proceedings/ ISBN 978-85-85783-53-2] Sao Paulo, Brazil, July 8-10, 2015, pp. 382.
summary Despite the effort of Korean government to vitalize BIM adoption in AEC industry, the domestic adoption of BIM is still in its initial step. Particular in design field where medium and small firms being the majority, shows lower level of BIM adoption. The primary reason for this can be considered as lacking of necessities caused by uncertain benefits of BIM. Therefore, it is time to develop the objectives, quantifiable and qualitative measurement system of BIM performances. The purpose of this study is to suggest the BIM Performance Measurement System for architectural design firms. In achieving this, the authors have developed Balanced Scorecard (BSC) and validated its appropriateness by questionnaire survey with experts and performing statistical analysis. This development can be contributed to the voluntary BIM adoption by visualizing the detailed benefit of BIM and to the improvement of enterprise competitiveness by facilitating management of design process and estimating future outcome.
keywords Building Information Modeling (BIM), BIM adoption, BIM benefit, Performance Measurement System (PMS), Balanced Scorecard (BSC), Critical Success Factors (CSF), Key Performance Indicators (KPI).
series CAAD Futures
email jungsikchoi@gmail.com
last changed 2015/06/29 05:55

_id caadria2016_487
id caadria2016_487
authors Shin, Jihye; Inhan Kim and Jungsik Choi
year 2016
title Development of the Integrated Management Environment of BIM Property Information for BIM-based Sustainable Design
source Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016) / Melbourne 30 March–2 April 2016, pp. 487-496
summary With the growing responsibility for the environmental load of building, the demand for sustainable building is increasing. Sus- tainable design requires an enormous amount of information, and most of this information can be captured by Building Information Modelling (BIM). In this context, the management of information in a BIM object as a container for exchanging information is necessary for analyzing a building’s sustainability. However, there are problems in generating a reliable sustainability simulation model from BIM, such as the inefficiency of required information and low accessibility to a proper BIM object. In order to provide a new approach for generating a reliable sustainability simulation model in a BIM-based design pro- cess, this study suggests the integrated management environment of the property information of a BIM object.
keywords Building information modelling (BIM); BIM object; energy analysis; sustainable design; property information
series CAADRIA
email sjh9025@khu.ac.kr
last changed 2016/03/11 09:21

No more hits.

HOMELOGIN (you are user _anon_782197 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002