CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 2 of 2

_id acadia18_226
id acadia18_226
authors Glynn, Ruairi; Abramovic, Vasilija; Overvelde, Johannes T. B.
year 2018
title Edge of Chaos. Towards intelligent architecture through distributed control systems based on Cellular Automata.
source ACADIA // 2018: Recalibration. On imprecisionand infidelity. [Proceedings of the 38th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-17729-7] Mexico City, Mexico 18-20 October, 2018, pp. 226-231
summary From the “Edge of Chaos”, a mathematical space discovered by computer scientist Christopher Langton (1997), compelling behaviors originate that exhibit both degrees of organization and instability creating a continuous dance between order and chaos. This paper presents a project intended to make this complex theory tangible through an interactive installation based on metamaterial research which demonstrates emergent behavior using Cellular Automata (CA) techniques, illustrated through sound, light and motion. We present a multi-sensory narrative approach that encourages playful exploration and contemplation on perhaps the biggest questions of how life could emerge from the disorder of the universe.

We argue a way of creating intelligent architecture, not through classical Artificial Intelligence (AI), but rather through Artificial Life (ALife), embracing the aesthetic emergent possibilities that can spontaneously arise from this approach. In order to make these ideas of emergent life more tangible we present this paper in four integrated parts, namely: narrative, material, hardware and computation. The Edge of Chaos installation is an explicit realization of creating emergent systems and translating them into an architectural design. Our results demonstrate the effectiveness of a custom CA for maximizing aesthetic impact while minimizing the live time of architectural kinetic elements.

keywords work in progress, complexity, responsive architecture, distributed computing, emergence, installation, interactive architecture, cellular automata
series ACADIA
type paper
email r.glynn@ucl.ac.uk
last changed 2019/01/07 11:21

_id 39fb
authors Langton, C.G.
year 1996
title Artificial Life
source Boden, M. A. (1996). The Philosophy of Artificial Life, 39-94.New York and Oxford: Oxford University Press
summary Artificial Life contains a selection of articles from the first three issues of the journal of the same name, chosen so as to give an overview of the field, its connections with other disciplines, and its philosophical foundations. It is aimed at those with a general background in the sciences: some of the articles assume a mathematical background, or basic biology and computer science. I found it an informative and thought-provoking survey of a field around whose edges I have skirted for years. Many of the articles take biology as their starting point. Charles Taylor and David Jefferson provide a brief overview of the uses of artificial life as a tool in biology. Others look at more specific topics: Kristian Lindgren and Mats G. Nordahl use the iterated Prisoner's Dilemma to model cooperation and community structure in artificial ecosystems; Peter Schuster writes about molecular evolution in simplified test tube systems and its spin-off, evolutionary biotechnology; Przemyslaw Prusinkiewicz presents some examples of visual modelling of morphogenesis, illustrated with colour photographs; and Michael G. Dyer surveys different kinds of cooperative animal behaviour and some of the problems synthesising neural networks which exhibit similar behaviours. Other articles highlight the connections of artificial life with artificial intelligence. A review article by Luc Steels covers the relationship between the two fields, while another by Pattie Maes covers work on adaptive autonomous agents. Thomas S. Ray takes a synthetic approach to artificial life, with the goal of instantiating life rather than simulating it; he manages an awkward compromise between respecting the "physics and chemistry" of the digital medium and transplanting features of biological life. Kunihiko Kaneko looks to the mathematics of chaos theory to help understand the origins of complexity in evolution. In "Beyond Digital Naturalism", Walter Fontana, Guenter Wagner and Leo Buss argue that the test of artificial life is to solve conceptual problems of biology and that "there exists a logical deep structure of which carbon chemistry-based life is a manifestation"; they use lambda calculus to try and build a theory of organisation.
series other
last changed 2003/04/23 13:14

No more hits.

HOMELOGIN (you are user _anon_965523 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002