CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 4 of 4

_id caadria2018_065
id caadria2018_065
authors Makki, Mohammed and Showkatbakhsh, Milad
year 2018
title Control of Morphological Variation Through Population Based Fitness Criteria
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 1, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 153-162
summary A primary challenge for the application of an evolutionary process as a design tool is the ability to maintain variation amongst design solutions while simultaneously increasing in fitness. The 'golden rule' of balancing exploration versus exploitation of solutions within the population becomes more critical when the solution set is required to present a controlled degree of phenotypic variation but ensure that convergence of the solution set continues towards increased levels of fitness. The experiments presented within this paper address the control of variation throughout the simulation by means of incorporating a population-based fitness criterion that is utilised as a fitness objective and is calculated dynamically throughout the algorithmic run in both single and multi objective design problems.
keywords Architecture; Computation ; Evolution; Urban; Variation
series CAADRIA
email showkatbakhsh@aaschool.ac.uk
last changed 2018/05/17 07:07

_id 3f92
authors Saad, Milad and Maher, Mary Lou
year 1995
title Exploring the Possibilities for Computer Support for Collaborative Designing
source Sixth International Conference on Computer-Aided Architectural Design Futures [ISBN 9971-62-423-0] Singapore, 24-26 September 1995, pp. 727-737
summary Design projects require a collaboration of individuals and a coordination of information and tasks. Computer support for design, more specifically CAD systems, have been developed to support a single user through a graphical interface and project teams through distributed data. This paper considers recent developments in computer support for synchronous collaborative design. The possibilities for developing a support environment for synchronous collaborative design cover a broad range of technical and personal considerations. We explore these possibilities by presenting several perspectives of the technical considerations and options, followed by a discussion of how such environments have the potential to enable a shared understanding among people as they are designing.
keywords Collaborative Design, Groupware, Shared CAD.
series CAAD Futures
email mary@arch.usyd.edu.au
last changed 2003/05/16 18:58

_id 6d9c
authors Saad, Milad and Maher, Mary Lou
year 1996
title Shared understanding in computer-supported collaborative design
source Computer-Aided Design, Vol. 28 (3) (1996) pp. 183-192
summary We propose that computer-support for collaborative design requires a shared understanding of the design artifact among a design team. The development and support for this shared understanding builds on currentdevelopments and research in AI, CAD, CSCW and computational models of design. The shared understanding should be an explicit representation in order to be effectively shared. The explicit representation shouldcomprise both a visual representation and a semantic model. In this paper we present an architecture for computer-supported collaborative design that distinguishes between a shared visual representation and a sharedunderlying representation. The development of the underlying representation combines graphical and semantic objects than can be abstracted and aggregated as a tangled hierarchy.
keywords Computer-Supported Collaborative Design, Design Semantics, Multimedia
series journal paper
last changed 2003/05/15 19:33

_id ecaade2018_170
id ecaade2018_170
authors Shahsavari, Fatemeh, Koosha, Rasool, Vahid, Milad R., Yan, Wei and Clayton, Mark
year 2018
title Towards the Application of Uncertainty Analysis in Architectural Design Decision-Making - A Probabilistic Model and Applications
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 1, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 295-304
summary To this day, proper handling of uncertainties -including unknown variables in primary stages of a design, an actual climate data, occupants' behavior, and degradation of material properties over the time- remains as a primary challenge in an architectural design decision-making process. For many years, conventional methods based on the architects' intuition have been used as a standard approach dealing with uncertainties and estimating the resulting errors. However, with buildings reaching great complexity in both their design and material selections, conventional approaches come short to account for ever-existing but unpredictable uncertainties and prove incapable of meeting the growing demand for precise and reliable predictions. This study aims to develop a probability-based framework and associated prototypes to employ uncertainty analysis and sensitivity analysis in architectural design decision-making. The current research explores an advanced physical model for thermal energy exchange characteristics of a hypothetical building and uses it as a test case to demonstrate the proposed probability-based analysis framework. The proposed framework provides a means to employ uncertainty and sensitivity analysis to improve reliability and effectiveness in a buildings design decision-making process.
keywords Probability-based design decision; uncertainty analysis; sensitivity analysis; building energy consumption model
series eCAADe
email aban2735@tamu.edu
last changed 2018/07/24 10:23

No more hits.

HOMELOGIN (you are user _anon_86559 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002