CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 2 of 2

_id ascaad2016_032
id ascaad2016_032
authors Alhadidi, Suleiman; Justin Mclean, Luchlan Sharah, Isabel Chia, Roger Sam
year 2016
title Multiflight - Creating Interactive Stairs through Positive Technology
source Parametricism Vs. Materialism: Evolution of Digital Technologies for Development [8th ASCAAD Conference Proceedings ISBN 978-0-9955691-0-2] London (United Kingdom) 7-8 November 2016, pp. 295-308
summary This paper details a pedagogical project which calls for an improved design performance of the existing built environment through the use of smart technology and data-driven design. The project is an investigation into ways in which to improve the performance of a ‘pre-selected university building’ through the use of a media facade that allows for interactive experiences. Existing problems of the selected building have been identified through observation and research using a rich picture and agile approach. An underutilised staircase was selected as the focus site for a series of computational design and interactive design studies. The brief of this mini-research project aims to encourage more people to use the stairs and create a memorable experience with a technological approach through the application of a site specific interactive media installation. The project is an interactive staircase which utilises LED strips and generative sound. The project features a series of light boxes which are connected to the existing staircase balustrade. Arduino, passive infra-red sensors, and other motion detection sensors were used to allow for light and generative sound interaction with users using visual scripting tools and a generative design platform. Sensing technology was used as a real-time data-gathering device during the site analysis phase as well as an input device for the designed prototype to allow the testing of the data-driven design. This paper details the study and resultant interactive prototypes. It also discusses the exploration of performance based design ideas into design workflows and the integration of sensing tools into the design process. It concludes by identifying possible implications on using the Internet of Things concepts to facilitate the design of interactive architecture.
series ASCAAD
email suleimanalhadidi@gmail.com
last changed 2017/05/25 11:33

_id caadria2017_028
id caadria2017_028
authors Sharah, Lachlan, Escalante, Erik, Fabbri, Alessandra, Guillot, Romain and Haeusler, M. Hank
year 2017
title Streamlining the Modelling to Virtual Reality Process - Semi-Automating Mesh Quadrangulation and UV Unwrapping for Grasshopper.
source P. Janssen, P. Loh, A. Raonic, M. A. Schnabel (eds.), Protocols, Flows, and Glitches - Proceedings of the 22nd CAADRIA Conference, Xi'an Jiaotong-Liverpool University, Suzhou, China, 5-8 April 2017, pp. 53-62
summary Visualisation in architecture often involves a transition between different modelling programs. This is done in order to be able to manually prepare and repair three-dimensional models for visualisations such as renders and VR simulations. In this paper the development of a direct link between a three-dimensional modelling platform and a Virtual Reality (VR) Engine is investigated. This is researched through the generation and manipulation of clean quad mesh topology, UV mapping and UV texture map creation. Through a reiterative process, all possible solutions for improved quad mesh topology for doubly curved surfaces are explored. The resulting clean quad mesh improves the usability of the model and application of textures to accurately simulate a real material. In parallel, the development of a UV unwrapping and UV map creation process was investigated to enhance the texturing process inside the same architectural modelling platform. The overall system was developed as an advanced tool for semi-automating and streamlining the process between modelling and VR simulation. The paper concludes with the limitations of the process and points out to future research to improve speed and quality as well guides to where future testing and experiments should be further investigated and applied.
keywords Virtual Reality; Quadrangulation; UV unwrapping; Physics Simulation
series CAADRIA
email m.haeusler@unsw.edu.au
last changed 2017/05/09 08:05

No more hits.

HOMELOGIN (you are user _anon_138492 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002