CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 4 of 4

_id 8312
authors Rasdorf, William J. and Wang, TsoJen E.
year 1986
title CDIS: An Engineering Constraint Definition and Integrity Enforcement System for Relational Databases
source Computers in Engineering International Conference Proceedings. 1986. American Society of Mechanical Engineers, vol. 2: pp. 273-280. CADLINE has abstract only
summary Database management systems (DBMS) are an essential component of the computer integrated manufacturing (CIM) environment. A database management system provides a powerful functionality for the storage, management, and use of engineering data. It is lacking, however, in its ability to deal with engineering constraints. In the past, constraint checking was performed by application programs. More recently DBMS's have been incorporating into their structure specifications for enforcing a limited set of integrity constraints and the mechanisms for invoking them automatically. To ensure the correctness of engineering data, an effective constraint management capability must be incorporated into any proposed engineering DBMS. This paper demonstrates how this can be done, proposes a systematic way to classify constraints so that integrity can be maintained efficiently, and discusses a prototype called CDIS which implements the concepts. This paper uses the relational database model to represent both engineering data and engineering constraints. Data integrity is defined and its enforcement through the use of engineering constraints is described. Existing methods for handling constraints are discussed. A new model that enables the engineer to associate design constraints with a relational database is presented and an example is given that demonstrates the model. Extensions to a DBMS to implement the concepts presented are described. No currently available DBMS provides the much needed capabilities proposed here
keywords civil engineering, relational database, constraints management
series CADline
last changed 2003/06/02 11:58

_id cc5a
authors Rasdorf, William J. and Wang, TsoJen E.
year 1986
title Expert System Integrity Maintenance for the Use of Engineering Data
source Computing in Civil Engineering Conference Proceedings (4th : 1986 : Boston, MA). American Society of Civil Engineers, pp. 654-668. CADLINE has abstract only
summary This paper describes a mechanism that enables one to automatically monitor and evaluate the use of engineering design data. The framework, associated with a relational database management system, combines a database with a set of constraints on the use of engineering data. This requires a database that stores all of the data normally associated with engineering design as well as all of the domain-dependent constraints imposed upon the use of the design data. Such a framework has been successfully constructed and is described in this paper. An example, based on constraints extracted from the AISC Specification, is presented and the performance of the framework is discussed. The proposed framework resides between a DBMS and its users and serves as an experienced expert consultant to the users. It embodies the knowledge of the specific domain of interest; in this case, allowable stresses in steel members. Whenever a user retrieves data from the database, the mechanism is activated. It interprets data request, applies the appropriate constraints, and provides the correct data. Its understanding of the semantics of both the data request and its own constraints insures the validity of data it selects to return to the user. All previous database integrity research concentrated on maintaining the integrity of the stored data, i.e., on guaranteeing the integrity of any static state of the database. This paper advocates a mechanism for checking data being retrieved from the database as well as for checking data being inserted into the database. It deals, therefore, with the correctness of data being selected for use
keywords information, civil engineering, expert systems, relational database
series CADline
last changed 2003/06/02 11:58

_id 66e5
authors Rasdorf, William J. and Wang, TsoJen E.
year 1987
title Generic Design Standards Processing in a Knowledge-based expert system Environment
source Design Process, National Science Foundation Workshop Proceedings. 1987. pp. 267-291. CADLINE has abstract only
summary Standards, codes, and specifications play an important role in the design of buildings, bridges, and other engineering systems. A design configuration must be checked against all standards to ensure that it is acceptable. This process of design conformance checking using standards is often very tedious. The successful automation of conformance checking is one of the components of a comprehensive computer-aided design system. In the past, standards were interpreted and converted into application program written in procedural programming languages such as FORTRAN. This approach is extremely inflexible and often error prone. To support a fully automated computer-aided design system, standards must be incorporated into the design process in a more generic and flexible manner. This paper investigates the feasibility of alternatively casting standards in a form suitable for processing in a knowledge-based expert system environment. The emergence of expert systems from artificial intelligence research has provided a technology that readily lends itself to the automation of design standards. Knowledge-based expert systems have become a powerful tool in tackling domains like design where some of the problem-solving knowledge is diverse and ill-structured. Using an expert system tool, a standard can be represented and processed independent of a CAD application program. Two prototype standards processing systems utilizing the production system approach have been constructed and are presented herein. Although the obvious direct translation casting the provisions of a standard as rules in a production system has its advantages, a more generic and flexible representation scheme is proposed herein. The approach advocated in this paper is to represent standards as databases of facts which can be readily and generically processed by an expert system. The database representation is derived from a unified view of standards obtained by using the standards modeling tools proposed by previous researchers in this field during the past decade. Building on this existing technology resulted in a knowledge- based standards processing architecture which is generic, modular, and flexible. An implementation of this architecture is presented and described
keywords knowledge base, standards, expert systems, civil engineering
series CADline
last changed 2003/06/02 11:58

_id 6683
authors Rasdorf, William J. and Wang, TsoJen E.
year 1987
title Spike : A Generic Design Standards Processing Expert System
source Southampton, UK: Computational Mechanics Publications, pp. 241-257. Also published in : Applications of Artificial Intelligence in Engineering International Conference Proceedings (2nd. : 1987 : Boston, MA.)
summary Standards, codes, and specifications play an important role in the design of buildings, bridges, and other engineering systems. A design configuration must be checked against all standards to ensure that it is acceptable. This process of design conformance checking using standards is often very tedious. The successful automation of conformance checking is one of the components of a comprehensive computer-aided design system. In that past, standards were interpreted and converted into application programs written in procedural programming languages such as FORTRAN. This approach is extremely inflexible and often error-prone. To support a fully automated computer-aided design system, standards must be incorporated into the design process in a more generic and flexible manner. This paper investigates the feasibility of alternatively casting standards in a form suitable for processing in a knowledge-based expert system environment. The emergence of expert systems from artificial intelligence research has provided a technology that readily lends itself to the automation of design standards. Knowledge-based expert systems have become a powerful tool in tackling domains like design where some of the problem-solving knowledge is diverse and ill-structured. Using an expert system tool, a standard can be represented and processed independent of a CAD application program. Two prototype standards processing systems utilizing the production system approach have been constructed and are presented herein. Although the obvious direct translation casting the provisions of a standard as rules in a production system has its advantages, a more generic and flexible representation scheme is proposed herein. The approach advocated in this paper is to represent standards as databases of facts which can be readily and generically processed by an expert system. The database representation is derived from a unified view of standards obtained by using the standards modeling tools proposed by previous researchers in this field during the past decade. Building on this existing technology resulted in a knowledge- based standards processing architecture which is generic, modular, and flexible. An implementation of this architecture is presented and described
keywords standards, civil engineering, expert systems
series CADline
last changed 2003/06/02 11:58

No more hits.

HOMELOGIN (you are user _anon_903173 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002