CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 34

_id cf2019_055
id cf2019_055
authors Agirbas, Asli
year 2019
title A proposal for the use of fractal geometry algorithmically in tiling design
source Ji-Hyun Lee (Eds.) "Hello, Culture!"  [18th International Conference, CAAD Futures 2019, Proceedings / ISBN 978-89-89453-05-5] Daejeon, Korea, pp. 438-453
summary The design inspired by nature is an ongoing issue from the past to the present. There are many design examples inspired from nature. Fractal geometry formation, which is focused on this study, is a system seen in nature. A model based on fractal growth principle was proposed for tile design. In this proposal made with using Visual Programming Language, a tiling design experiment placed in a hexagonal grid system was carried out. Thus, a base was created for tile designs to be made using the fractal principle. The results of the case study were evaluated and potential future studies were discussed.
keywords Fractals, Tile design, Biomimetic design, Algorithmic design
series CAAD Futures
email asliagirbas@gmail.com
last changed 2019/07/29 12:18

_id ecaade2015_235
id ecaade2015_235
authors Ahmar, Salma El and Fioravanti, Antonio
year 2015
title Biomimetic-Computational Design for Double Facades in Hot Climates - A Porous Folded Façade for Office Buildings
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 2, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 687-696
wos WOS:000372316000076
summary Biomimetic design is an approach that is gaining momentum among architects and designers. Computational design and performance simulation software represent powerful tools that help in applying biomimetic ideas in architectural design and in understanding how such proposals would behave. This paper addresses the challenge of reducing cooling loads while trying to maintain daylight needs of office buildings in hot climatic regions. Specifically, it focuses on double skin facades whose application in hot climates is somewhat controversial. Ideas from nature serve as inspiration in designing a porous, folded double façade for an existing building, aiming at increasing heat lost by convection in the façade cavity as well as reducing heat gained by radiation. The cooling loads and daylight autonomy of an office room are compared before and after the proposed design to evaluate its performance.
series eCAADe
email salma_elahmar@yahoo.com
more https://mh-engage.ltcc.tuwien.ac.at/engage/ui/watch.html?id=f87306fc-6e90-11e5-845a-00190f04dc4c
last changed 2016/05/16 09:08

_id ecaade2009_164
id ecaade2009_164
authors Arslan Selçuk, Semra; Gönenç Sorguç, Arzu
year 2009
title Exploring Complex Forms in Nature Through Mathematical Modeling: a Case on Turritella Terebra
source Computation: The New Realm of Architectural Design [27th eCAADe Conference Proceedings / ISBN 978-0-9541183-8-9] Istanbul (Turkey) 16-19 September 2009, pp. 665-672
wos WOS:000334282200080
summary Changing paradigm of nature-architecture relationship has being directly affected from developing science and technologies as well as from the impact of biomimetic inventions in various man made designs. Our perception of forms and structures are also shifting through use of computational techniques. From this aspect, mathematical models can be considered as the first step to analyze the complex forms and structures in nature. In this paper it is aimed to initiate a platform in architecture which will serve for discussions to explore the potentials of these interactions under the impact of computational and information technologies, not only in terms of formal/visual way, but also extending to learn more about the formation process in nature.
keywords Shells, learning from nature, seashells, mathematical modeling
series eCAADe
email semraarslan@yahoo.com, arzug@arch.metu.edu.tr
last changed 2016/05/16 09:08

_id ecaade2016_079
id ecaade2016_079
authors Cheng, Chi-Li and Hou, June-Hao
year 2016
title Biomimetic Robotic Construction Process - An approach for adapting mass irregular-shaped natural materials
source Herneoja, Aulikki; Toni Österlund and Piia Markkanen (eds.), Complexity & Simplicity - Proceedings of the 34th eCAADe Conference - Volume 1, University of Oulu, Oulu, Finland, 22-26 August 2016, pp. 133-142
wos WOS:000402063700015
summary Beaver dams are formed by two main processes. One is that beavers select proper woods for constructing. The other one is that streams aggregate those woods to be assembled. Using this approach to construction structure is suitable for natural environment. In this paper, we attempt to develop a construction process which is suitable for all-terrain construction robot in the future. This construction process is inspired by beavers' construction behavior in nature. Beavers select proper sticks to make the structure stable. We predict that particular properties of sticks contribute gravity-driven assembly of wood structure. Thus, we implement the system with machine learning to find proper properties of sticks to improve selection mechanism of construction process. During this construction process, 3D scanner on robotic arm scans and recognizes sticks on terrain, and then robot will select proper sticks and place them. After placement, the system will scan and record the results for learning mechanism.
keywords Biomimetic Design; Machine Learning; Natural Material; Point Cloud Analysis; Robotic Fabrication
series eCAADe
email micky@arch.nctu.edu.tw
last changed 2017/06/28 08:46

_id ecaade2018_204
id ecaade2018_204
authors de Oliveira, Maria Jo?o, Moreira Rato, Vasco and Leit?o, Carla
year 2018
title KINE[SIS]TEM'17 - A methodological process for a Nature-Based Design
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 1, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 561-570
summary Architecture is the mediator between the Environment and Humans. Nature maximal performance and minimal resources creations are Humanity inspiration that led us to exceed structural, material, mechanisms, tools, systems and methods boundaries (Oxman, 2010).Nature are the Architect of the most reliable and sustainable systems. Looking into Nature's lessons, this paper presents a Nature-based design methodology conducted during Kine[SIS]tem'17 Shading Systems International Summer School, held by the ISCTE-Instituto Universitário de Lisboa, Portugal, between 19th - 30th June 2017. The methodology encompasses two main stages, one before and other during the Summer School. From a pre-definition of context constrains, a nature based design strategy, to a planning of the manufacture and construction still during the phase of development of the design, conducted the Summer School participants through a defined biomimetic process that achieved the construction of 1:1 scale prototype.
keywords Kinesis; Shading; System; Nature-based design
series eCAADe
email mjoaomoliveira@gmail.com
last changed 2018/07/24 10:23

_id caadria2014_047
id caadria2014_047
authors Dickinson, Susannah and Sheehan Wachter
year 2014
title Nature as a Comprehensive Model: A Biomimetic Installation
source Rethinking Comprehensive Design: Speculative Counterculture, Proceedings of the 19th International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2014) / Kyoto 14-16 May 2014, pp. 627–636
summary The following group installation was part of a seminar on biomimetics at the University of Arizona, USA. The design began with research into various natural systems, namely cell growth and morphogenesis and digital tools. In nature cells contain preprogrammed responses based on intrinsic properties which allow for differentiation and adaptation to external forces. This logic of cell morphology was developed into the installation design. Form specificity and topological variation was developed through the manipulation of a material system, bending and loading identical components to adapt to external forces, such as the sun, while simultaneously navigating the site, providing structure and ultimately architectural space.
keywords Biomimetics; pedagogy; simulation; design/build
series CAADRIA
email srd@email.arizona.edu
last changed 2014/04/22 08:23

_id acadia15_173
id acadia15_173
authors Erdine, Elif
year 2015
title Generative Processes in Tower Design: Simultaneous Integration of Tower Subsystems Through Biomimetic Analogies
source ACADIA 2105: Computational Ecologies: Design in the Anthropocene [Proceedings of the 35th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-53726-8] Cincinnati 19-25 October, 2015), pp. 173-184
summary The research presented in the paper formulates part of the methodological approach of a recently completed PhD thesis. The principle aim of the thesis is to achieve simultaneous integration of tower subsystems which can coherently adapt to their internal and external context during the initial phases of the design process. In this framework, the tower subsystems are grouped as the structural system, floor system, vertical circulation system, facade system, and environmental system. The paper focuses on the implementation of the specific biomimetic analogies towards the integration of tower subsystems through computationally generated dynamic systems. The biomimetic analogies are the mechanical and organizational properties of branched constructions, the mechanical properties of the bamboo stem, and the micro-structure of the porcupine quill/ hedgehog spine. Each biomimetic analogy is described in relation to the design domain. Methods of employing the mathematical and geometrical principles of the biomimetic analogies during design explorations are elaborated. Outcomes of the design output are outlined and discussed with a concentration on achieving tower subsystem integration, differentiation, and co-adaptation properties.
keywords Tower, integration, biomimetics, minimal detours, bamboo stem, porcupine quill, hedgehog spine, generative
series ACADIA
type normal paper
email elif.erdine@aaschool.ac.uk
last changed 2016/08/05 11:37

_id ecaade2013_192
id ecaade2013_192
authors Erdine, Elif
year 2013
title Biomimetic Strategies in Tower Design
source Stouffs, Rudi and Sariyildiz, Sevil (eds.), Computation and Performance – Proceedings of the 31st eCAADe Conference – Volume 1, Faculty of Architecture, Delft University of Technology, Delft, The Netherlands, 18-20 September 2013, pp. 559-568
wos WOS:000340635300058
summary The paper argues that the tower needs to respond to its environment by changing from a closed building typology towards a heterogeneous, differentiated open system that can adapt to the changing conditions within and around it. This argument is supported by focusing on the analogies and principles of specific biological examples in order to propose computationally-generated self-organizing systems. The goal of analyzing these models is to integrate their structural and geometrical characteristics with the aim of overcoming high lateral loading conditions in towers, as well as elaborating on the existence of multi-functionality and integration throughout the subsystems of the tower. A series of computational models which abstract the biological properties and articulate them with a generative approach through the use of agent-based systems are implemented according to designated evaluation criteria.
keywords Tower; biomimetics; integration; differentiation; generative algorithms.
series eCAADe
email elif.erdine@aaschool.ac.uk
last changed 2016/05/16 09:08

_id sigradi2017_007
id sigradi2017_007
authors Gronda, Ma. Luciana; Mauro Chiarella
year 2017
title Materialidad Digital. Análisis de estrategias de Arquitectura Orientada al Desempeño transferibles al Diseño Resiliente [Digital Materiality. Analysis of Performance-Oriented Architecture strategies transferable to Resilient Design]
source SIGraDi 2017 [Proceedings of the 21th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-227-439-5] Chile, Concepción 22 - 24 November 2017, pp.51-59
summary The general objective of the research is to contribute to the critical conceptualization of experimental architectural practices in the context of the production suggested by Digital Materiality from a global perspective. Performance Oriented Architecture is the capacity that material systems have for Active, Responsive or Living Performance. These three lines of action, analyzed with antecedents, suggest efficient forms of symbiosis with the environment, starting from the application of Biomimetic research methodologies. Strategic possibilities for implementation are identified where technology, interdisciplinary and with creativity, offers access to Resilient Design solutions to adapt to the consequences of a design subordinated to the needs of industrialization.
keywords Digital Materiality; Performance; Biomimetic Research; Resilient Design.
series SIGraDi
email grondaluciana@hotmail.com
last changed 2018/07/27 08:05

_id ecaade2009_145
id ecaade2009_145
authors Gün, Onur Yüce
year 2009
title Value through Precision, Beyond the Realms
source Computation: The New Realm of Architectural Design [27th eCAADe Conference Proceedings / ISBN 978-0-9541183-8-9] Istanbul (Turkey) 16-19 September 2009, pp. 377-384
wos WOS:000334282200045
summary Today we portray designs with analytical systems and systems with the emerging terminology of computational design. Generative, intelligent, digital, parametric, associative, biomimetic designs sound valuable, whereas the integrity remains questionable. The tool, enabling designer to play with forms, patterns, models is neither granting him the knowledge nor teaching him the appropriate technique. Are we really able to digest and master all the information we’re subject to, to be used in our designs? Or do we have much to learn about the investigations of the renaissance men to reach to a level of proficiency?
keywords Computation, design, precision, digital, scripting, CAD, data, scripting, visualization, optimization, rationalization
series eCAADe
email onuryucegun@alum.mit.edu
last changed 2016/05/16 09:08

_id sigradi2005_167
id sigradi2005_167
authors Ibarrola, María Celeste; Vanesa Soledad Iozzo, Sabrina Klor
year 2005
title New processes of digital design: intelligent skin
source SIGraDi 2005 - [Proceedings of the 9th Iberoamerican Congress of Digital Graphics] Lima - Peru 21-24 november 2005, vol. 1, pp. 167-172
summary The project consists of the generation of a bioclimatic architectonic skin that acts like a living creature, responding in real time to environmental conditions, allowing a greater inner comfort by means of the regulation of factors like temperature, radiation, humidity and illumination. It starts with the study of a vegetal epidermis (interface between the environment and the alive organism), transposing this information on the behavior of a living creature front to environmental factors, creating an architectonic skin that acts in the same way. Environmental data are incorporated soon in the computer and will be the digital tool the one in charge of interpolating such, generating a non predictable result. A project of these characteristics is inserted in diverse fields within the new architectonic tendencies: the intelligent architecture, of data, biomimetic, sustainable and bioclimatic. [Full paper in Spanish]
series SIGRADI
email mcele@hotmail.com
last changed 2016/03/10 08:53

_id ecaade2017_149
id ecaade2017_149
authors Jahanara, Alireza and Fioravanti, Antonio
year 2017
title Kinetic Shading System as a means for Optimizing Energy Load - A Parametric Approach to Optimize Daylight Performance for an Office Building in Rome
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 2, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 231-240
summary Current research, as a part of on-going PhD research, explores the possibilities of dynamic pattern inspired from biomimetic design and presents a structured framework for light to manage strategies. The experiment stresses the improvement of daylight performance through the design and motion of kinetic facades using various integrated software.The impact of kinetic motion of hexagonal pattern was studied by integrating triangle and triangle covering through blooming pyramids on south-facing skin to control the daylight distribution, using a parametric simulation technique. The simulation was carried out for a south oriented façade of an office room in Rome, Italy over three phases. The first optimized results represent the static base case, which were compared to the other two proposed dynamic models in this research. Results demonstrate that dynamic façade achieved a better daylighting performance in comparison to optimized static base case.
keywords Bio-Inspired Pattern; Parametric Design; Dynamic Façade; Daylighting
series eCAADe
email alireza.jahanara@uniroma1.it
last changed 2017/09/13 13:30

_id sigradi2012_164
id sigradi2012_164
authors Kim, Sun-Joong; Lee, Ji-Hyun
year 2012
title How Biomimetic Approach Enlarges Morphological Solution Space
source SIGraDi 2012 [Proceedings of the 16th Iberoamerican Congress of Digital Graphics] Brasil - Fortaleza 13-16 November 2012, pp. 538-542
summary Ordinarily, high-speed train design methodology has been modeled to guide designer’s problem solving and design thinking. However, the current methodology cannot guide designers in very detail due to the reason of the difficulties in bridging gap between pure engineering-knowledge and design-knowledge. In other words, these two knowledge are disconnected each other in a whole frame of design process. But, the paradigm shift that was induced by biomimetic approach has demanded an interdisciplinary approach for a generation of new geometrical characteristics that were impossible to be handled in the current design methodology. In this research, as a case study, we quantify the front-head design of high-speed trains to check the impacts of biomimetic approach. Quantitative methodology of the landmark based morphometric design analysis is introduced and adapted on the study.
keywords Biomimetics; Design Analysis; Morphometrics; High-speed Train Design
series SIGRADI
email iuvenalis@kaist.ac.kr
last changed 2016/03/10 08:53

_id ecaade2011_035
id ecaade2011_035
authors Krieg, Oliver David; Dierichs, Karola; Reichert, Steffen; Schwinn, Tobias; Menges, Achim
year 2011
title Performative Architectural Morphology: Robotically manufactured biomimetic finger-joined plate structures
source RESPECTING FRAGILE PLACES [29th eCAADe Conference Proceedings / ISBN 978-9-4912070-1-3], University of Ljubljana, Faculty of Architecture (Slovenia) 21-24 September 2011, pp.573-580
wos WOS:000335665500066
summary Performative Architectural Morphology is a notion derived from the term Functional Morphology in biology and describes the capacity of an architectural material system to adapt morphologically to specific internal constraints and external influences and forces. The paper presents a research project that investigates the possibilities and limitations of informing a robotically manufactured finger-joint system with principles derived from biological plate structures, such as sea urchins and sand dollars. Initially, the material system and robotic manufacturing advances are being introduced. Consequently, a performative catalogue is presented, that analyses both the biological system’s basic principles, the respective translation into a more informed manufacturing logic and the consequent architectural implications. The paper concludes to show how this biologically informed material system serves to more specifically respond to a given building environment.
keywords Robotic Manufacturing; Biomimetics; Parametric Design; Wood Joints; Plate Structures
series eCAADe
email oliver@davidkrieg.com
last changed 2016/05/16 09:08

_id ecaade2012_152
id ecaade2012_152
authors Krieg, Oliver David; Mihaylov, Boyan; Schwinn, Tobias; Reichert, Steffen; Menges, Achim
year 2012
title Computational Design of Robotically Manufactured Plate Structures Based on Biomimetic Design Principles Derived from Clypeasteroida
source Achten, Henri; Pavlicek, Jiri; Hulin, Jaroslav; Matejovska, Dana (eds.), Digital Physicality - Proceedings of the 30th eCAADe Conference - Volume 2 / ISBN 978-9-4912070-3-7, Czech Technical University in Prague, Faculty of Architecture (Czech Republic) 12-14 September 2012, pp. 531-540
wos WOS:000330320600056
summary The paper presents the current development of an ongoing research project about the integration of robotic fabrication strategies in computational design through morphological and functional principles derived from natural systems. Initially, a developed plate structure material system based on robotically fabricated fi nger joints is being informed by biomimetic principles from the sea urchin Clypeasteroida in order to be able to adapt effi ciently to its building environment. Consequently, the paper’s main focus lies on translating the biomimetic design principles into a computational design tool, also integrating fabrication parameters as well as structural and architectural demands. The design tool’s capability to integrate these parameters is shown by the design, development and realization of a full-scale research pavilion. The paper concludes with discussing the performative capacity of the developed material system and the introduced methodology.
keywords Biomimetics; Digital Simulation; Parametric Design; Robotic Manufacturing
series eCAADe
email oliver@davidkrieg.com
last changed 2014/04/14 11:07

_id ecaade2012_95
id ecaade2012_95
authors Ladurner, Georg; Gabler, Markus; Menges, Achim; Knippers, Jan
year 2012
title Interactive Form-Finding for Biomimetic Fibre Structures: Development of a Computational Design Tool and Physical Fabrication Technique Based on the Biological Structure of the Lichen
source Achten, Henri; Pavlicek, Jiri; Hulin, Jaroslav; Matejovska, Dana (eds.), Digital Physicality - Proceedings of the 30th eCAADe Conference - Volume 2 / ISBN 978-9-4912070-3-7, Czech Technical University in Prague, Faculty of Architecture (Czech Republic) 12-14 September 2012, pp. 519-529
wos WOS:000330320600055
summary This contribution shows a biomimetic approach to design and produce fibrous structural elements derived from the morphology of the biologic archetype ‘the lichen’. The physical form fi nding strategy allows for a novel self-organised reinforcement for fibrous composite systems. A computational design tool has been developed, based on the fi ndings of various physical models. The digital device allows for shape control and therefore an interaction to and manipulation of the fabrication process. Since the form fi nding algorithms of the tool are based on physical experiments,every geometry is derived through the program and has its counterpart in production. For example: the fibre density in the model can be adjusted which leads to different geometries. In production the chosen denseness is utilised, thus, the production yields automatically to the desired load-optimized geometry found in the form-finding tool.
keywords Biomimetics; Form-finding; Self-organization; Emergence; Fibre structures
series eCAADe
email georg.ladurner@gmail.com
last changed 2014/04/14 11:07

_id ecaade2014_140
id ecaade2014_140
authors Marcin Wójcik and Jan Strumillo
year 2014
title BackToBack - A bio-cybernetic approach to production of solid timber components
source Thompson, Emine Mine (ed.), Fusion - Proceedings of the 32nd eCAADe Conference - Volume 2, Department of Architecture and Built Environment, Faculty of Engineering and Environment, Newcastle upon Tyne, England, UK, 10-12 September 2014, pp. 159-168
wos WOS:000361385100017
summary This paper investigates the potential and implications of using naturally occurring material phenomena as a connecting mechanism for solid timber components. Proposed and discussed are connections based on anisotropic shrinkage and geometrical variability of trees. Using the notion of material agency in design, following the bio-cybernetic and biomimetic frameworks, solutions are devised to reduce energy usage, environmental pollution and utilise low-processed material. Finally, consequences of the fusion of the natural (analogue) and the digital realms are discussed, with an example of a workflow integrating inherent material traits with digital manufacture.
keywords Material-oriented design; computational design; wood properties
series eCAADe
email marcin.wojcik@aho.no
last changed 2016/05/16 09:08

_id sigradi2017_044
id sigradi2017_044
authors Massara Rocha, Bruno; Leonado Valbão Venancio
year 2017
title Impressão 3D e processo de projeto paramétrico aplicado ao design emergencial [3D printing and parametric design process applied to emergency design]
source SIGraDi 2017 [Proceedings of the 21th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-227-439-5] Chile, Concepción 22 - 24 November 2017, pp.301-306
summary After the biggest environmental disaster in Brazil, the issue of emergency design emerged. The emergency design is guided by effective and agile responses to disasters and develops specific project intelligences which deals with the particularities and complexities of emergency situations. In this paper concepts and experimental solutions of emergency design are investigated using parametric design and 3d printing. The project explored light biomimetic structural frames and surfaces and analyses the potential of biodegradable materials such as cellulose acetate in the production of these components to create spatial architectural solutions.
keywords Emergency Design; Surface Design; Biomimetic; 3D Printing; Parametric Design
series SIGraDi
email bmassara@gmail.com
last changed 2018/07/27 08:08

_id sigradi2017_006
id sigradi2017_006
authors Massara Rocha, Bruno; Leonado Valbão Venancio
year 2017
title Impressão 3D e processo de projeto paramétrico aplicado ao design emergencial [3D printing and parametric design process applied to emergency design]
source SIGraDi 2017 [Proceedings of the 21th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-227-439-5] Chile, Concepción 22 - 24 November 2017, pp.45-50
summary After the biggest environmental disaster in Brazil, the issue of emergency design emerged. The emergency design is guided by effective and agile responses to disasters and develops specific project intelligences which deals with the particularities and complexities of emergency situations. In this paper concepts and experimental solutions of emergency design are investigated using parametric design and 3d printing. The project explored light biomimetic structural frames and surfaces and analyses the potential of biodegradable materials such as cellulose acetate in the production of these components to create spatial architectural solutions.
keywords Emergency Design; Surface Design; Biomimetic; 3D Printing; Parametric Design
series SIGraDi
email bmassara@gmail.com
last changed 2018/07/27 08:05

_id sigradi2015_11.71
id sigradi2015_11.71
authors Medina, Viviana Hernaiz Diez de; Macruz, Andrea; Ginés, Pau
year 2015
title Morphogenetic processes in architectonical design
source SIGRADI 2015 [Proceedings of the 19th Conference of the Iberoamerican Society of Digital Graphics - vol. 2 - ISBN: 978-85-8039-133-6] Florianópolis, SC, Brasil 23-27 November 2015, pp. 637-641.
summary This paper presents the relationship between morphogenetic concepts in nature and the creation of a generative system as a design process. This biomimetic approach generates an adaptive system that is able to respond to different parameters corresponding to the site where the membrane growths, contributing to the development of a new understanding of architecture in which the digital system and the performance of the material are reciprocal.
series SIGRADI
email arquitecturah@gmail.com
last changed 2016/03/10 08:55

For more results click below:

this is page 0show page 1HOMELOGIN (you are user _anon_539734 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002