CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers

Hits 1 to 7 of 7

_id ecaade2016_026
id ecaade2016_026
authors Agkathidis, Asterios
year 2016
title Implementing Biomorphic Design - Design Methods in Undergraduate Architectural Education
source Herneoja, Aulikki; Toni Österlund and Piia Markkanen (eds.), Complexity & Simplicity - Proceedings of the 34th eCAADe Conference - Volume 1, University of Oulu, Oulu, Finland, 22-26 August 2016, pp. 291-298
wos WOS:000402063700033
summary In continuation to Generative Design Methods, this paper investigates the implementation of Biomorphic Design, supported by computational techniques in undergraduate, architectural studio education. After reviewing the main definitions of biomorphism, organicism and biomimicry synoptically, we will assess the application of a modified biomorphic method on a final year, undergraduate design studio, in order to evaluate its potential and its suitability within the framework of a research led design studio, leading to an RIBA accredited Part I degree. Our research findings based on analysis of design outputs, student performance as well as moderators and external examiners reports initiate a constructive debate about accomplishments and failures of a design methodology which still remains alien to many undergraduate curricula.
keywords CAAD Education; Strategies, Shape Form and Geometry; Generative Design; Design Concepts
series eCAADe
last changed 2017/06/28 08:46

_id acadia08_292
id acadia08_292
authors Celento, David; Del Harrow
year 2008
title ceramiSKIN: Digital Possibilities for Ceramic Cladding Systems
source Silicon + Skin: Biological Processes and Computation, [Proceedings of the 28th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) / ISBN 978-0-9789463-4-0] Minneapolis 16-19 October 2008, 292-299
summary CeramiSKIN is an inter-disciplinary investigation by an architect and a ceramics artist examining new possibilities for ceramic cladding using digital design and digital fabrication techniques. Research shown is part of an ongoing collaborative residency at The European Ceramics Work Centre. ¶ Ceramics are durable, sustainable, and capable of easily assuming detailed shapes with double curvature making ceramics seemingly ideal for digitally inspired “plastic” architecture. The primary reason for the decline in complex ceramic cladding is that manual mold-making is time-consuming—which is at odds with today’s high labor costs and compressed construction timeframes. We assert that digital advances in the area of mold-making will assist in removing some of the barriers for the use of complex ceramic cladding in architecture. ; The primary goals of ceramiSKIN as they relate to digitally assisted production are: greater variety and complexity, reduced cost and time, a higher degree of accuracy, and an attempt to facilitate a wider range of digital design possibilities through the use of a ceramics in architectural cladding systems. ¶ The following paper begins with an overview discussing double curvature and biophilia in architecture and their relationship to ceramics. This is followed by detailed commentary on three different experiments prior to a concluding summary.
keywords Biomorphic; Collaboration; Complex Geometry; Digital Fabrication; Skin
series ACADIA
last changed 2009/02/26 07:39

_id caadria2015_030
id caadria2015_030
authors Daas, Mahesh and Andrew Wit
year 2015
title Pedagogy of Architectural Robotics
source Emerging Experience in Past, Present and Future of Digital Architecture, Proceedings of the 20th International Conference of the Association for Computer-Aided Architectural Design Research in Asia (CAADRIA 2015) / Daegu 20-22 May 2015, pp. 3-12
summary As computation and robotics become more prevalent in all aspects of architecture, their impact on education assumes greater importance. The paper presents the outcomes of a collaborative undergraduate architectural design studio that investigates the realms of architectural robotics and computation by stepping into the fecund intersections between multiple disciplines. The pedagogical prototype, Unsolicited: An Inconvenient Studio, broadly focused on the topics of robotics and responsive architectures. The notion of robotics was interpreted to include a range of robotic technologies and their formal manifestations in the form of biomorphic, mechanomorphic, polymorphic, and amorphic robots, and interactive architecture. Taught using a recently developed framework that focuses on self-organizing systems and the creation of innovative technology-driven design entrepreneurs rather than merely on the creation of designed artefacts, students found themselves not only innovating with new digital technologies but also bridging architecture, urbanism and computer science. The paper describes the pedagogy, processes, and outcomes of the studio.
keywords Robotics; interactive architecture; pedagogy; innovation; studio.
series CAADRIA
last changed 2015/06/05 05:14

_id ecaadesigradi2019_455
id ecaadesigradi2019_455
authors Moreira, Jo?o, Figueiredo, Bruno and Cruz, Paulo
year 2019
title Ceramic Additive Manufacturing in Architecture - Computational Methodology for Defining a Column System
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 1, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 471-476
summary The present paper describes a research that explores the design and production of customised architectural ceramic components defined through parametric relations of biomorphic inspiration and to be built through additive manufacturing. In this sense, is presented a case study that develops a system of both architectural and structural components - a column system. The definition process of the system is mediated by computational design, implementing not only structural analysis and optimization strategies, but also mimetic formal characteristics of nature to an initial grid, creating a model that adapts its formal attributes, depending on its assumptions and the material constraints. This process resulted in the definition of a set of solutions that better answer to a specific design problem.
keywords Additive Manufacturing; Ceramic 3D; Computational Design; Structural Optimization; Biomorphism
series eCAADeSIGraDi
last changed 2019/08/26 20:25

_id acadia08_390
id acadia08_390
authors Vrana, Andrew; Joe Meppelink; Ben Nicholson
year 2008
title New Harmony Grotto
source Silicon + Skin: Biological Processes and Computation, [Proceedings of the 28th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) / ISBN 978-0-9789463-4-0] Minneapolis 16-19 October 2008, 390-399
summary With the expanding wave of contemporary architecture inspired and informed by biomorphic design and biomimetic processes, the re-evaluation of work of Frederick Kiesler has become immanent. Throughout the mid 20th century he became increasingly interested in the relationship of natural form and structure to architectural space and organization. The Grotto for Meditation proposed in 1963 for New Harmony, Indiana commissioned by Mrs. Jane Blaffer-Owen was the culmination of his life’s work. Though the project was not realized, it embodies all of the influences of his time from surrealism to biology and cybernetic theory. Through our university and the Blaffer Foundation, we engaged in formal research and tectonic resolution of the project employing digital modeling and fabrication technologies at our College and in Houston where Mrs. Owen lives when she is not in New Harmony. We based this project on the full catalog of archival material made available to us with support from the Blaffer and Kielser Foundations. Our exploration also was influenced by discussions with Mrs. Blaffer-Owen who is still very interested in realizing this profoundly interesting and enigmatic project. Our university has opened the door to the opportunity that our reinterpreted Grotto become a permanent fixture on the campus next to a wetland landscape that it is currently under construction. Our research into Kiesler has engaged his esoteric concepts of “co-realism” and “continuous tension” as well as his early use of recursive geometry and biomorphic form in design. From reverse engineering and digital fabrication via 3D scanning to generative structural articulation, we are experimenting with a structural/spatial system that closely aligns with Kiesler’s originally proposed tile patterning dilated into a minimal structure. Our prototypes and the final version will be fabricated by one of the largest commercially for-hire water jet cutter in country and assembled on the site.
keywords Biomorphic; Digital Fabrication; Prototype; Structure
series ACADIA
last changed 2009/02/26 07:39

_id sigradi2015_11.8
id sigradi2015_11.8
authors Wallace, Mint Penpisuth; Schnabel, Marc Aurel
year 2015
title Biomorphic Transportation Frameworks for Cities of the Future. Exploring new design framework for transportations
source SIGRADI 2015 [Proceedings of the 19th Conference of the Iberoamerican Society of Digital Graphics - vol. 2 - ISBN: 978-85-8039-133-6] Florianópolis, SC, Brasil 23-27 November 2015, pp. 626-630.
summary Development in the study of city expansion, through biomorphic generation, could potentially assist in the design of a transportation system that will accommodate expansion whilst contributing to an ecologically balanced growth. This paper focuses on a section of a design framework which looks at how generative systems can be implemented in an architectural design of a transportation network that will respond to the site’s projected future growth. This paper suggests that by integrating biomorphic generative systems into the design process we can generate designs that respond to the surrounding context and urban growth.
keywords Biomorphic Algorithm, Generative Design, Processing, Urban Growth
series SIGRADI
last changed 2016/03/10 09:02

_id ecaade2015_284
id ecaade2015_284
authors Wit, Andrew and Daas, Mahesh
year 2015
title Memos from an Inconvenient Studio - Unsolicited Projects for Responsive Architectures
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 2, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 177-184
wos WOS:000372316000022
summary Computation, robotics and intelligent building/fabrication systems are finding themselves ever more prevalent within both practice and education. The assimilation of these new tools and methodologies within the pedagogy of architectural education continues to gain greater importance as we perceive their rapid evolution and integration within surrounding emergent fields. Through the model of an Inconvenient Studio, this paper examines the intersection between interdisciplinary collaboration, architectural robotics and computation as a means of gaining a broader understanding of how the architectural learning environment can be transformed into a self-organizing system for emergent solutions. The pedagogical prototype for an Inconvenient Studio was broadly focused on the topics of architectural robotics and responsive architectures interpreted through a range of robotic technologies and their manifestations such as biomorphic, mechanomorphic, polymorphic and amorphic robotics. Through a set of three “Memos” (Self-Organization, Autonomy, Sentience), this paper will describe how students created innovative technology-driven think tanks that produced design entrepreneurs.
series eCAADe
last changed 2016/05/16 09:08

No more hits.

HOMELOGIN (you are user _anon_171740 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002