CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 4 of 4

_id c3e0
authors Dorsey, J. and McMillan, L.
year 1998
title Computer Graphics and Architecture: State of the Art and Outlook for the Future
source Computer Graphics, Vol 32, No 1, Feb 1998. pp. 45-48
summary During the three decades since Ivan Sutherland introduced the Sketchpad system, there has been an outpouring of computer graphics systems for use in architecture. In response to this development, most of the major architectural firms around the world have embraced the idea that computer literacy is mandatory for success. We would argue, however, that most of these recent developments have failed to tap the potential of the computer as a design tool. Instead, computers have been relegated largely to the status of drafting instruments, so that the "D" in CAD stands for drafting rather than design. It is important that future architectural design systems consider design as a continuous process rather than an eventual outcome.The advent of computer graphics technology has had an impact on the architectural profession. Computer graphics has revolutionized the drafting process, enabling the rapid entry and modification of designs. In addition, modeling and rendering systems have proven to be invaluable aids in the visualization process, allowing designers to walk through their designs with photorealistic imagery. Computer graphics systems have also demonstrated utility for capturing engineering information, greatly simplifying the analysis and construction of proposed designs. However, it is important to consider that all of these tasks occur near the conclusion of a larger design process. In fact, most of the artistic and intellectual challenges of an architectural design have already been resolved by the time the designer sits down in front of a computer. In seeking insight into the design process, it is generally of little use to revisit the various computer archives and backups. Instead, it is best to explore the reams of sketches and crude balsa models that fill the trash cans of any architectural studio.In architecture, as in most other fields, the initial success of computerization has been in areas where it frees humans from tedious and mundane tasks. This includes the redrawing of floor plans after minor modifications, the generation of largely redundant, yet subtly different engineering drawings and the generation of perspective renderings.We believe that there is a largely untapped potential for computer graphics as a tool in the earlier phases of the design process. In this essay, we argue that computer graphics might play a larger role via applications that aid and amplify the creative process.
series journal paper
last changed 2003/04/23 13:50

_id acadia19_298
id acadia19_298
authors Leach, Neil
year 2019
title Do Robots Dream of Digital Sleep?
source ACADIA 19:UBIQUITY AND AUTONOMY [Proceedings of the 39th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-59179-7] (The University of Texas at Austin School of Architecture, Austin, Texas 21-26 October, 2019) pp. 298-309
summary AI is playing an increasingly important role in everyday life. But can AI actually design? This paper takes its point of departure from Philip K Dick’s novel, Do Androids Dream of Electric Sheep? and refers to Google’s DeepDream software, and other AI techniques such as GANs, Progressive GANs, CANs and StyleGAN, that can generate increasingly convincing images, a process often described as ‘dreaming’. It notes that although generative AI does not possess consciousness, and therefore cannot literally dream, it can still be a powerful design tool that becomes a prosthetic extension to the human imagination. Although the use of GANs and other deep learning AI tools is still in its infancy, we are at the dawn of an exciting – but also potentially terrifying – new era for architectural design. Most importantly, the paper concludes, the development of AI is also helping us to understand human intelligence and 'creativity'.
series ACADIA
type normal paper
email leachneil@gmail.com
last changed 2019/12/18 08:03

_id caadria2008_69_session7a_572
id caadria2008_69_session7a_572
authors Lertlakkhanakul, Jumphon; Seoyoung Lee, Jinwon Choi
year 2008
title A Study of The Effects of Placeness on Collaborative Virtual Workplace
source CAADRIA 2008 [Proceedings of the 13th International Conference on Computer Aided Architectural Design Research in Asia] Chiang Mai (Thailand) 9-12 April 2008, pp. 572-578
summary So far, there is no empirical study on how ‘placeness’ can affect virtual workplace model. This problem has continuously been overlooked. The research objectives are to verify the effectiveness of ‘workplace metaphor’ and to find out factors that constitute ‘placeness’, the properties of being a place, in collaborative virtual workplace. An experiment was conducted to test the framework. At the end, different virtual workplace settings can result in dissimilar user behavior in terms of teamwork and attitude toward the workplace as disparate settings imply different requirements on function, organizational culture, and social meaning. In conclusion, if architectural elements are carefully applied to the virtual office, it cans strengthen teamwork and enhances social interaction.
keywords Collaborative virtual workplace; collaborative virtual environments; office ecology; place metaphor; socio-spatial behavior
series CAADRIA
email {jumphon, lsycubic, jchoi}@yonsei.ac.kr
last changed 2012/05/30 19:29

_id ecaadesigradi2019_064
id ecaadesigradi2019_064
authors Wang, Shao-Yun, Sianoudi, Agathi, Wang, Maohua, Wu, Hongmei, Wang, Tsung-Hsien, Zhang, Zhuoqun and Peng, Chengzhi
year 2019
title Singing Cans - Prototyping an experimental wind instrument through parametric design integrated with field experiments
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 1, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 703-710
summary We present a study of how parametric design can be linked to field experiments where ready-made plug-ins are not available for performative modelling. The study centres on prototyping 'Singing Cans' - an experimental wind instrument made with an assembly of drinking cans that can produce sounds in recognizable pitches by interacting with airflows. We describe how field experiments conducted in a fluid flow lab can generate performative resources linkable to parametric design modelling. In Singing Cans, we focus on how to get airflow through a hole made on drinking can to make sounds. The prototyping process involved a lab-based calibration process to establish the relationship between the air volume of a can, measured by water-filling, and the pitch produced, measured by the Tuner Lite by Piascore. The field experiments resulted in a dataset capturing a can's sound-making behaviour in terms of water volumes and pitches. A parametric model that can take in wind data generated by a CFD package and output a 3D frame for site-specific cans installation is presented.
keywords parametric design; field experiments; experimental wind instrument; fluid flow instrumentation; sound production
series eCAADeSIGraDi
email asianoudi1@sheffield.ac.uk
last changed 2019/08/26 20:26

No more hits.

HOMELOGIN (you are user _anon_901444 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002