CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 41 to 60 of 2695

_id acadia17_28
id acadia17_28
authors Aguiar, Rita; Cardoso, Carmo; Leit?o,António
year 2017
title Algorithmic Design and Analysis Fusing Disciplines
source ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 28-37
summary In the past, there has been a rapid evolution in computational tools to represent and analyze architectural designs. Analysis tools can be used in all stages of the design process, but they are often only used in the final stages, where it might be too late to impact the design. This is due to the considerable time and effort typically needed to produce the analytical models required by the analysis tools. A possible solution would be to convert the digital architectural models into analytical ones, but unfortunately, this often results in errors and frequently the analytical models need to be built almost from scratch. These issues discourage architects from doing a performance-oriented exploration of their designs in the early stages of a project. To overcome these issues, we propose Algorithmic Design and Analysis, a method for analysis that is based on adapting and extending an algorithmic-based design representation so that the modeling operations can generate the elements of the analytical model containing solely the information required by the analysis tool. Using this method, the same algorithm that produces the digital architectural model can also automatically generate analytical models for different types of analysis. Using the proposed method, there is no information loss and architects do not need additional work to perform the analysis. This encourages architects to explore several design alternatives while taking into account the design’s performance. Moreover, when architects know the set of design variations they wish to analyze beforehand, they can easily automate the analysis process.
keywords design methods; information processing; simulation & optimization; BIM; generative system
series ACADIA
email rita.aguiar@ist.utl.pt
last changed 2017/10/17 09:12

_id sigradi2009_740
id sigradi2009_740
authors Aguirre León, Eduardo Alberto; Mauricio Ramirez Molina
year 2009
title New Interfaces, new scenarios. Vroom n.0 :Vroom n.0 : The emerging potential of collaborative 3D web platforms
source SIGraDi 2009 - Proceedings of the 13th Congress of the Iberoamerican Society of Digital Graphics, Sao Paulo, Brazil, November 16-18, 2009
summary What sort of interfaces will allow, in the future, to manage the evolution of information and knowledge generation? What new scenarios would emerge in contemporary architecture when the access to a multidimensional architectural database is open and it is written and visited by anyone, anywhere in earth? Internet evolution is fast and unpredictable, propelling deep changes at different levels of our society. Spinoffs, unexpected outcomes are result of those changes, unfolding uncertain, unstable scenarios. This paper discusses the question of what could be the way to organize the process of registering, documenting and online publishing, native digital, three-dimensional content of Architecture, assuming the critical issue of information integration.
keywords Interfaces; 3d database; 3d datamining; 3d taxonomy; online curatorship
series SIGRADI
email eaguirreleon@gmail.com
last changed 2016/03/10 08:47

_id de77
authors Ahmad Rafi, M.E.
year 1998
title Computer animation for architectural visualisation
source University of Strathclyde
summary This thesis critically reviews the state of architectural animation, and relates this specific field to the more general motion-based representations, particularly traditional film-making techniques. It identifies key elements from traditional filmmaking and shows how these elements can improve computer-based architectural animation. The process of identification of the key elements from traditional film-making starts with a critical survey of the use of motion-based representation in local architectural practices and an empirical analysis of several architectural-based documentary films and past and present computer animations. All of the key ideas are illustrated on video by comparing real shooting clips to digital sequences focusing on production and post-production works. Some of these were implemented in two live projects ( Ministry of Finance, Malaysia and Damansara Parade ) for architects to understand the real problems and potentials in each process. These sets of illustrations expand the architect ideas to make full use of the motion-based process to improve the skill of combining architectural information in a good animation. The overall production process becomes more efficient when the motion-based footage is edited using a non-linear editing platform as it enhances the professional appearance as well as vastly saving most of the production time. The thesis concludes with specific recommendations relative to the stage at which the animation is produced. This technology can be best utilised with the right skills (a gained from film-making) and an understanding of each stage that requires a different level of input and gives a certain impact to the viewers.
series thesis:PhD
email ahmadrafi.eshaq@mmu.edu.my
last changed 2003/11/21 14:15

_id ascaad2016_014
id ascaad2016_014
authors Ahmed, Zeeshan Y.; Freek P. Bos, Rob J.M. Wolfs and Theo A.M. Salet
year 2016
title Design Considerations Due to Scale Effects in 3D Concrete Printing
source Parametricism Vs. Materialism: Evolution of Digital Technologies for Development [8th ASCAAD Conference Proceedings ISBN 978-0-9955691-0-2] London (United Kingdom) 7-8 November 2016, pp. 115-124
summary The effect of scale on different parameters of the 3D printing of concrete is explored through the design and fabrication of a 3D concrete printed pavilion. This study shows a significant gap exists between what can be generated through computer aided design (CAD) and subsequent computer aided manufacturing (generally based on CNC technology). In reality, the 3D concrete printing on the one hand poses manufacturing constraints (e.g. minimum curvature radii) due to material behaviour that is not included in current CAD/CAM software. On the other hand, the process also takes advantage of material behaviour and thus allows the creation of shapes and geometries that, too, can’t be modelled and predicted by CAD/CAM software. Particularly in the 3D printing of concrete, there is not a 1:1 relation between toolpath and printed product, as is the case with CNC milling. Material deposition is dependent on system pressure, robot speed, nozzle section, layer stacking, curvature and more – all of which are scale dependent. This paper will discuss the design and manufacturing decisions based on the effects of scale on the structural design, printed and layered geometry, robot kinematics, material behaviour, assembly joints and logistical problems. Finally, by analysing a case study pavilion, it will be explore how 3D concrete printing structures can be extended and multiplied across scales and functional domains ranging from structural to architectural elements, so that we can understand how to address questions of scale in their design.
series ASCAAD
email z.y.ahmed@tue.nl
last changed 2017/05/25 11:31

_id ecaade2014_055
id ecaade2014_055
authors Ahmet Emre Dincer, Gülen Cagdas and Hakan Tong
year 2014
title A Digital Tool for Customized Mass Housing Design
source Thompson, Emine Mine (ed.), Fusion - Proceedings of the 32nd eCAADe Conference - Volume 1, Department of Architecture and Built Environment, Faculty of Engineering and Environment, Newcastle upon Tyne, England, UK, 10-12 September 2014, pp. 201-211
summary Innovative design approaches are needed for mass housing implementations. Especially increasing interaction between user and designer is major important in the design decisions of these buildings. For this, it is seriously necessary to benefit from technological advances in computational designs, because digital tools like shape grammar, cellular automata, genetic algorithm, l-systems and agent-based models in this field provide not only to save time and to manage the relationships but also to generate many different alternatives. Accordingly, a digital support tool for designers has been developed by using cellular automata approach and scripts of 3Ds Max software. It produces samples of housing design plans which is generated by cellular automata approach according to the data of users' preferences. In this paper the interface and contributions of the developed model are introduced and discussed.
wos WOS:000361384700020
keywords Computational design; mass customization; innovative housing design; plugin
series eCAADe
email aedincer@karabuk.edu.tr
last changed 2016/05/16 09:08

_id caadria2019_413
id caadria2019_413
authors Ahrens, Chandler, Chamberlain, Roger, Mitchell, Scott, Barnstorff, Adam and Gelbard, Joshua
year 2019
title Controlling Daylight Reflectance with Cyber-physical Systems
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 1, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 433-442
summary Cyber-physical systems increasingly inform and alter the perception of atmospheric conditions within interior environments. The Catoptric Surface research project uses computation and robotics to precisely control the location of reflected daylight through a building envelope to form an image-based pattern of light on the building interior's surfaces. In an attempt to amplify or reduce spatial perception, the daylighting reflected onto architectural surfaces within a built environment generates atmospheric effects. The modification of light patterns mapped onto existing or new surfaces enables the perception of space to not rely on form alone. The mapping of a new pattern that is independent of architectural surfaces creates a visual effect of a formless atmosphere and holds the potential to affect the way people interact with the space. People need different amounts and quality of daylight depending on physiological differences due to age or the types of tasks they perform. This research argues for an informed luminous and atmospheric environment that is relative both to the user and more conceptual architectural aspirations of spatial perception controlled by a cyber-physical robotic façade system.
keywords Contextual; Computation
series CAADRIA
email cahrens@wustl.edu
last changed 2019/04/16 08:25

_id acadia12_47
id acadia12_47
authors Aish, Robert ; Fisher, Al ; Joyce, Sam ; Marsh, Andrew
year 2012
title Progress Towards Multi-Criteria Design Optimisation Using Designscript With Smart Form, Robot Structural Analysis and Ecotect Building Performance Analysis"
source ACADIA 12: Synthetic Digital Ecologies [Proceedings of the 32nd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-62407-267-3] San Francisco 18-21 October, 2012), pp. 47-56
summary Important progress towards the development of a system that enables multi-criteria design optimisation has recently been demonstrated during a research collaboration between Autodesk’s DesignScript development team, the University of Bath and the engineering consultancy Buro Happold. This involved integrating aspects of the Robot Structural Analysis application, aspects of the Ecotect building performance application and a specialist form finding solver called SMART Form (developed by Buro Happold) with DesignScript to create a single computation environment. This environment is intended for the generation and evaluation of building designs against both structural and building performance criteria, with the aim of expediently supporting computational optimisation and decision making processes that integrate across multiple design and engineering disciplines. A framework was developed to enable the integration of modeling environments with analysis and process control, based on the authors’ case studies and experience of applied performance driven design in practice. This more generalised approach (implemented in DesignScript) enables different designers and engineers to selectively configure geometry definition, form finding, analysis and simulation tools in an open-ended system without enforcing any predefined workflows or anticipating specific design strategies and allows for a full range of optimisation and decision making processes to be explored. This system has been demonstrated to practitioners during the Design Modeling Symposium, Berlin in 2011 and feedback from this has suggested further development.
keywords Design Optimisation , Scripting , Form Finding , Structural Analysis , Building Performance
series ACADIA
type normal paper
email robert.aish@autodesk.com
last changed 2013/01/09 10:06

_id 678e
authors Aish, Robert
year 1986
title Three-dimensional Input and Visualization
source Computer-Aided Architectural Design Futures [CAAD Futures Conference Proceedings / ISBN 0-408-05300-3] Delft (The Netherlands), 18-19 September 1985, pp. 68-84
summary The aim of this chapter is to investigate techniques by which man-computer interaction could be improved, specifically in the context of architectural applications of CAD. In this application the object being designed is often an assembly of defined components. Even if the building is not actually fabricated from such components, it is usually conceptualized in these terms. In a conventional graphics- based CAD system these components are usually represented by graphical icons which are displayed on the graphics screen and arranged by the user. The system described here consists of three- dimensional modelling elements which the user physically assembles to form his design. Unlike conventional architectural models which are static (i.e. cannot be changed by the users) and passive (i.e. cannot be read by a CAD system), this model is both 'user generated' and 'machine readable'. The user can create, edit and view the model by simple, natural modelling activities and without the need to learn complex operating commands often associated with CAD systems. In particular, the user can view the model, altering his viewpoint and focus of attention in a completely natural way. Conventional computer graphics within an associated CAD system are used to represent the detailed geometry which the different three-dimensional icons may represent. In addition, computer graphics are also used to present the output of the performance attributes of the objects being modelled. In the architectural application described in this chapter an energy- balance evaluation is displayed for a building designed using the modelling device. While this system is not intended to offer a completely free-form input facility it can be considered to be a specialist man-machine interface of particular relevance to architects or engineers.
series CAAD Futures
email Robert.Aish@bentley.com
last changed 2003/11/21 14:15

_id 2005_010
id 2005_010
authors Aish, Robert
year 2005
title From Intuition to Precision
source Digital Design: The Quest for New Paradigms [23nd eCAADe Conference Proceedings / ISBN 0-9541183-3-2] Lisbon (Portugal) 21-24 September 2005, pp. 10-14
summary Design has been described as making inspire decisions with incomplete information. True, we may use prior knowledge, we may even think we understand the causalites involved, but what really matters is exploration: of new forms, of new materials, and speculation about the response to the resulting effects. Essentially, this exploration has its own dynamics, involving intuition and spontaneity, and without which there is no design. But of course we all know that this is not the whole story. Design is different to 'craft'; to directly 'making' or 'doing'. It necessarily has to be predictive in order to anticipate what the consequence of the 'making' or 'doing' will be. Therefore we inevitably have to counter balance our intuition with a well developed sense of premeditation. We have to be able to reason about future events, about the consequence of something that has not yet being made. There is always going to be an advantage if this reasoning can be achieved with a degree of precision. So how can we progress from intuition to precision? What abstractions can we use to represent, externalize and test the concepts involved? How can we augment the cognitive processes? How can we record the progression of ideas? And, how do we know when we have arrived? Design has a symbiotic relationship with geometry. There are many design issues that are independent of any specific configurations. We might call these “pre-geometric” issues. And having arrived at a particular configuration, there may be many material interpretations of the same geometry. We might call these “post-geometric” issues. But geometry is central to design, and without appropriate geometric understanding, the resulting design will be limited. Geometry has two distinct components, one is a formal descriptive system and the other is a process of subjective evaluation.
series eCAADe
email Robert.Aish@bentley.com
last changed 2012/11/23 18:17

_id ijac20053201
id ijac20053201
authors Aitcheson, Robert; Friedman, Jonathan; Seebohm, Thomas
year 2005
title 3-Axis CNC Milling in Architectural Design
source International Journal of Architectural Computing vol. 3 - no. 2, 161-180
summary Physical scale models still have a role in architectural design. 3-axis CNC milling provides one way of making scale models both for study purposes and for presentation in durable materials such as wood. We present some types of scale models, the methods for creating them and the place in the design process that scale models occupy. We provide an overview of CNC milling procedures and issues and we describe the process of how one can creatively develop appropriate methods for milling different types of scale models and materials. Two case studies are presented with which we hope to convey not only the range of possible models that can be machined but also the way one creatively explores to arrive at appropriate milling strategies. Where apposite, we compare 3-axis CNC milling to newer technologies used for rapid prototyping but rapid prototyping is not a primary focus.
series journal
more http://www.multi-science.co.uk/ijac.htm
last changed 2007/03/04 06:08

_id acadia17_52
id acadia17_52
authors Ajlouni, Rima
year 2017
title Simulation of Sound Diffusion Patterns of Fractal-Based Surface Profiles
source ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 52-61
summary Acoustical design is one of the most challenging aspects of architecture. A complex system of competing influences (e.g., space geometry, size, proportion, material properties, surface detail, etc.) contribute to shaping the quality of the auditory experience. In particular, architectural surfaces affect the way that sound reflections propagate through space. By diffusing the reflected sound energy, surface designs can promote a more homogeneous auditory atmosphere by mitigating sharp and focused reflections. One of the challenges with designing an effective diffuser is the need to respond to a wide band of sound wavelengths, which requires the surface profile to precisely encode a range of detail sizes, depths and angles. Most of the available sound diffusers are designed to respond to a narrow band of frequencies. In this context, fractal-based surface designs can provide a unique opportunity for mitigating such limitations. A key principle of fractal geometry is its multilevel hierarchical order, which enables the same pattern to occur at different scales. This characteristic makes it a potential candidate for diffusing a wider band of sound wavelengths. However, predicting the reflection patterns of complicated fractal-based surface designs can be challenging using available acoustical software. These tools are often costly, complicated and are not designed for predicting early sound propagation paths. This research argues that writing customized algorithms provides a valuable, free and efficient alternative for addressing targeted acoustical design problems. The paper presents a methodology for designing and testing a customized algorithm for predicting sound diffusion patterns of fractal-based surfaces. Both quantitative and qualitative approaches were used to develop the code and evaluate the results.
keywords design methods; information processing; simulation & optimization; data visualization
series ACADIA
email ajlouni@arch.utah.edu
last changed 2017/10/17 09:12

_id ddss2004_ra-19
id ddss2004_ra-19
authors Akamine, A. and A. Nélson Rodrigues da Silva
year 2004
title An Evaluation of Neural Spatial Interaction Models Based on a Practical Application
source Van Leeuwen, J.P. and H.J.P. Timmermans (eds.) Recent Advances in Design & Decision Support Systems in Architecture and Urban Planning, Dordrecht: Kluwer Academic Publishers, ISBN: 1-4020-2408-8, p. 19-32
summary One of the serious problems faced by the Brazilian municipalities is the scarcity of resources for building education infrastructure. This asks for an optimal allocation of the available resources that includes, among other things, a rational spatial arrangement of the supply points (i.e., schools) in order to increase the demand coverage (i.e., students). If it is possible to foresee the regions where the demand is going to be concentrated, it is then possible to plan the location of new facilities and to assess the impact on the future level of service of the entire system. Considering that one of the consequences of the location-allocation process is the distribution of trips from demand points to supply points throughout the city, therefore affecting the overall intraurban accessibility conditions to essential services such as education, there is a strong need of models that planners can rely on to predict the future trip distribution patterns. As a result, the objective of this work was to evaluate the performance of Artificial Neural Networks (ANN) when applied to spatial interaction models, the so-called Neural Spatial Interaction Models. This was done in a practical context, in contrast to the more theoretical works commonly found in literature. The practical application showed that the neural spatial interaction model had different performances when compared to the traditional gravity models. In one case the neural models outperformed the gravity models, while on the other case it was just the opposite. The explanation for this may be in the data or in the ANN model formulation, as discussed in the conclusions.
keywords Artificial Neural Networks, Spatial Interaction Models, Education Infrastructure
series DDSS
last changed 2004/07/03 20:13

_id 0a09
authors Akin, O., Dave, B. and Pithavadian, S.
year 1987
title Problem Structuring in Architectural Design
source February, 1987. [4], 15 p. : ill. includes bibliography
summary The purpose of this research is to describe in operational terms the process of problem structuring while solving spatial problems in architectural design. The designer's behavior is described in terms of problem structuring, when problem parameters are established or transformed, and in terms of problem solving when these parameters are satisfied in a design solution. As opposed to problem solving, the structuring of problems is an under-studied but crucial aspect of complex tasks such as design. This work is based on observations derived from verbal protocol studies. To consider various levels of skill, the research subjects range from professional architects to novice designers. Subjects are given space planning problems which require them to develop solutions in accordance with individually established constraints and criteria, the majority of which are not explicit stated in the problem description. Based on the results of the protocol analysis, a framework is developed which explains how information processing characteristics, problem structure and different levels of expertise interact to influence the designer behavior
keywords architecture, design process, problem solving, protocol analysis, problem definition
series CADline
email oa04@andrew.cmu.edu
last changed 2003/05/17 08:09

_id eb23
authors Akin, Omer
year 1981
title Efficient Computer-User Interface in Electronic Mail Systems
source Department of Computer Science, April, 1981. ii, 24 p. includes bibliography
summary This research explores the question of improving user- computer interface. The approach is one of observing and codifying various parameters that influence the efficiency of interface in the context of electronic mail tasks. In the paper the authors observe 'expert' and 'regular' users of a mail system and analyze the sources of efficiency. It is clear that experts use a different, more specialized, set of commands in performing standard mail tasks. While experts perform these tasks with fewer errors and more 'completely,' it is not clear that they achieve this any faster than regular users. Recommendations for design are made
keywords user interface, protocol analysis
series CADline
email oa04@andrew.cmu.edu
last changed 2003/05/17 08:09

_id ijac20108403
id ijac20108403
authors Aksamija, Ajla; Ivanka Iordanova
year 2010
title Computational Environments with Multimodal Representations of Architectural Design Knowledge
source International Journal of Architectural Computing vol. 8 - no. 4, p. 439
summary This article discusses interaction between multimodal representations of architectural design knowledge, particularly focusing on relating explicit and implicit types of information. The aim of the presented research is to develop a computational environment that combines several modes of representation, including and integrating different forms of architectural design knowledge. Development of an interactive digital-models library and ontological model of architectural design factors are discussed, which are complementary in nature. In a time when BIM software is seen as embodiment of domain knowledge and the future medium of architectural design, this paper presents an interaction between ontological representation of architectural design knowledge and its embodiment in interactive models, thus focusing on the process of design and design space exploration. In the digital environments that we propose, representation of different formats of knowledge, such as visual, linguistic or numeric, are integrated with relational and procedural information, design rules, and characteristics. Interactive search and query based on contextual constraints, and parametric variation of the model based on the information received from ontology are the underlying drivers for design exploration and development.
series journal
last changed 2019/05/24 07:55

_id ecaadesigradi2019_318
id ecaadesigradi2019_318
authors Al Bondakji, Louna, Lammich, Anne-Liese and Werner, Liss C.
year 2019
title ViBe (Virtual Berlin) - Immersive Interactive 3D Urban Data Visualization - Immersive interactive 3D urban data visualization
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 3, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 83-90
summary The project investigates the possibility of visualizing open source data in a 3D interactive virtual environment. We propose a new tool, 'ViBe'. We programmed 'ViBe' using Unity for its compatibility with HTC VIVE glasses for virtual reality (VR). ViBe offers an abstract visualization of open source data in a 3D interactive environment. The ViBe environment entails three main topics a) inhabitants, b) environmental factors, and c) land-use; acting as representatives of parameters for cities and urban design. Berlin serves as a case study. The data sets used are divided according to Berlin's twelve administrative districts. The user immerses into the virtual environment where they can choose, using the HTC Vive controllers, which district (or Berlin as a whole) they want information for and which topics they want to be visualized, and they can also teleport back and forth between the different districts. The goal of this project is to represent different urban parameters an abstract simulation where we correlate the corresponding data sets. By experiencing the city through visualized data, ViBe aims to provide the user with a clearer perspective onto the city and the relationship between its urban parameters. ViBe is designed for adults and kids, urban planners, politicians and real estate developers alike.
keywords 3D-Visualization; open source data; immersive virtual reality; interactive ; Unity
series eCAADeSIGraDi
email louna.albondakji@campus.tu-berlin.de
last changed 2019/08/26 20:28

_id ascaad2014_007
id ascaad2014_007
authors Al-Rawi, Osama
year 2014
title Evolutionary Algorithms in Islamic Architecture
source Digital Crafting [7th International Conference Proceedings of the Arab Society for Computer Aided Architectural Design (ASCAAD 2014 / ISBN 978-603-90142-5-6], Jeddah (Kingdom of Saudi Arabia), 31 March - 3 April 2014, pp. 99-107
summary The cosmological nature of Islamic architecture makes it a useful case study for the capability of the adaptation, assimilation and accommodation with the development of evolutionary algorithms and their applications in architectural design. Genetic algorithm derives its structure from the observation of nature. We shall review the concept of intelligent agents and their organization into complex adaptive systems as well as genetic-type algorithms for learning and evolution. Since algorithmic art consists of generation of images on the basis of algorithms, algorithms can be viewed as a notation, and notation is something that music has but visual artefacts in general miss. This paper aims to discover the role of evolutionary algorithms in historical Islamic architecture. Also, we shall try to investigate the way in which the future development could occur not only through the discovery of new facts or theories, but also through the rise and dissemination of new visions having different explanation of Islamic architecture that considers it as a result of serious application of formation through evolutionary genetic algorithms.
series ASCAAD
email pleximotif@yahoo.com
last changed 2016/02/15 12:09

_id eb5f
authors Al-Sallal, Khaled A. and Degelman, Larry 0.
year 1994
title A Hypermedia Model for Supporting Energy Design in Buildings
source Reconnecting [ACADIA Conference Proceedings / ISBN 1-880250-03-9] Washington University (Saint Louis / USA) 1994, pp. 39-49
summary Several studies have discussed the limitations of the available CAAD tools and have proposed solutions [Brown and Novitski 1987, Brown 1990, Degelman and Kim 1988, Schuman et al 1988]. The lack of integration between the different tasks that these programs address and the design process is a major problem. Schuman et al [1988] argued that in architectural design many issues must be considered simultaneously before the synthesis of a final product can take place. Studies by Brown and Novitski [1987] and Brown [1990] discussed the difficulties involved with integrating technical considerations in the creative architectural process. One aspect of the problem is the neglect of technical factors during the initial phase of the design that, as the authors argued, results from changing the work environment and the laborious nature of the design process. Many of the current programs require the user to input a great deal of numerical values that are needed for the energy analysis. Although there are some programs that attempt to assist the user by setting default values, these programs distract the user with their extensive arrays of data. The appropriate design tool is the one that helps the user to easily view the principal components of the building design and specify their behaviors and interactions. Data abstraction and information parsimony are the key concepts in developing a successful design tool. Three different approaches for developing an appropriate CAAD tool were found in the literature. Although there are several similarities among them, each is unique in solving certain aspects of the problem. Brown and Novitski [1987] emphasize the learning factor of the tool as well as its highly graphical user interface. Degelman and Kim [1988] emphasize knowledge acquisition and the provision of simulation modules. The Windows and Daylighting Group of Lawrence Berkeley Laboratory (LBL) emphasizes the dynamic structuring of information, the intelligent linking of data, the integrity of the different issues of design and the design process, and the extensive use of images [Schuman et al 19881, these attributes incidentally define the word hypermedia. The LBL model, which uses hypermedia, seems to be the more promising direction for this type of research. However, there is still a need to establish a new model that integrates all aspects of the problem. The areas in which the present research departs from the LBL model can be listed as follows: it acknowledges the necessity of regarding the user as the center of the CAAD tool design, it develops a model that is based on one of the high level theories of human-computer interaction, and it develops a prototype tool that conforms to the model.

series ACADIA
email l-degelman@neo.tamu.edu
last changed 2003/11/21 14:15

_id caadria2003_c2-4
id caadria2003_c2-4
authors Al-Sallal, Khaled A.
year 2003
title Integrating Energy Design Into Caad Tools: Theoretical Limits and Potentials
source CAADRIA 2003 [Proceedings of the 8th International Conference on Computer Aided Architectural Design Research in Asia / ISBN 974-9584-13-9] Bangkok Thailand 18-20 October 2003, pp. 323-340
summary The study is part of a research aims to establish theoretical grounds essential for the development of user efficient design tools for energy-conscious architectural design, based on theories in human factors of intelligent interfaces, problem solving, and architectural design. It starts by reviewing the shortcomings of the current energy design tools, from both architectural design and human factor points of view. It discusses the issues of energy integration with design from three different points of view: architectural, problem-solving, and human factors. It evaluates theoretically the potentials and limitations of the current approaches and technologies in artificial intelligence toward achieving the notion "integrating energy design knowledge into the design process" in practice and education based on research in the area of problem solving and human factors and usability concerns. The study considers the user interface model that is based on the cognitive approach and can be implemented by the hierarchical structure and the object-oriented model, as a promising direction for future development. That is because this model regards the user as the center of the design tool. However, there are still limitations that require extensive research in both theoretical and implementation directions. At the end, the study concludes by discussing the important points for future research.
series CAADRIA
email k.sallal@uaeu.ac.ae
last changed 2003/12/02 06:47

_id ecaade2017_240
id ecaade2017_240
authors Al-Sudani, Amer, Hussein, Hussein and Sharples, Steve
year 2017
title Sky View Factor Calculation - A computational-geometrical approach
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 2, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 673-682
summary Sky view factor (SVF) is a well-known parameter in urban-climatic studies, but there is a lack of consensus on its effectiveness, especially with regard to the interpretation of changes in urban air temperatures. This led the authors to develop the new concept of the partial sky view factor (SVFp), which showed promise in a previous study. The objective of this study is to save the time associated with manual methods of calculating SVF and SVFp by developing a Rhino-Grasshopper component to quantify them via the hemispheric projection of a 3D model. In addition, a different approach, in terms of a hemispheric projection to calculate SVF, will be introduced by another component, and the pros and cons of each approach are considered. We will name these methods 'Ray Method' and 'Geometrical Method' respectively. The Ray Method has achieved a good balance between accuracy, processing time and urban scale and complexity compared to the Geometrical Method.
keywords Sky view factor; parametric design; Rhino - Grasshopper; urban morphology; partial Sky view factor
series eCAADe
email A.H.A.Al-Sudani@liverpool.ac.uk
last changed 2017/09/13 13:30

For more results click below:

show page 0show page 1this is page 2show page 3show page 4show page 5show page 6show page 7... show page 134HOMELOGIN (you are user _anon_579513 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002