CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 16 of 16

_id ecaade2010_229
id ecaade2010_229
authors Aschwanden, Gideon D. P. A.; Wullschleger, Tobias; Müller, Hanspeter; Schmitt, Gerhard
year 2010
title Agent based Emission Evaluation of Traffic in Dynamic City Models
source FUTURE CITIES [28th eCAADe Conference Proceedings / ISBN 978-0-9541183-9-6] ETH Zurich (Switzerland) 15-18 September 2010, pp.717-726
wos WOS:000340629400077
summary We present a simulation platform to evaluate procedurally generated 3d city models with a set of agents representing urban street actors and pedestrians towards greenhouse gas emissions from transportation. Our aim is to give architects and urban planners an empiric tool to analyze, predict and quantify traffic fluctuations over time, and define the number of occupants, individual traffic and public transport in a city. In this project we show that the allocation of functions within a city is an important factor for the appearanceof traffic. The occupant’s decisions where they want to go are defined by the allocation of functions – and the distance defines the mode of transportation. We simulate the decision processes and gain information about the path, the mode of transportation, and the emissions they produce, and individual experiences like stress and effort. The autonomous driving cars are equipped with an acceleration based emission model allowing us to evaluate the inpact of jammed streets on the emission of cars.
keywords Urban planning; Multi-agent system; Generative city model; Occupant movement; Traffic emission
series eCAADe
email aschwanden@arch.ethz.ch
last changed 2016/05/16 09:08

_id acadia05_226
id acadia05_226
authors Biloria, N., Oosterhuis, K. and Aalbers, C.
year 2005
title Design Informatics
source Smart Architecture: Integration of Digital and Building Technologies [Proceedings of the 2005 Annual Conference of the Association for Computer Aided Design In Architecture / ISBN 0-9772832-0-8] Savannah (Georgia) 13-16 October 2005, pp. 226-235
summary The research paper exemplifies a novel information integrated design technique developed at ONL (Oosterhuis and Lenard), Netherlands, specifically appropriated for envisaging complex geometric forms. The ‘informed design technique’, apart from being highly instrumental in conceptualizing and generating the geometric component constituting architectural form in a parametric manner, is also efficiently utilized for precise computer aided manufacturing and construction of the speculated form. Geometric complexities inherent in contemporary architectural constructs and the time spent in appropriation of such topologies, fueled the ‘informed design’ approach, which caters to issues of timely construction, precision oriented design and production (visual and material) and parametric modeling attuned to budgetary fluctuations. This design-research approach has been tested and deployed by ONL, for conceiving ‘the Acoustic Barrier’ project, Utrecht Leidsche Rijn in the Netherlands and is treated as a generic case for exemplifying the ‘informed design’ technique in this research paper. The design methodology encourages visualizing architectural substantiations from a systems perspective and envisages upon a rule based adaptive systems approach involving extrapolation of contextual dynamics/ground data in terms of logical ‘rules’. These rules/conditionalities form the basis for spawning parametric logistics to be mapped upon geometric counterparts exemplifying the conception. The simulated parametric relations bind dimensional aspects (length, width, height etc.) of the geometric construct in a relational manner, eventually culminating in a 3D spatial envelope. This evolved envelope is subsequently intersected with a ‘parametric spatio-constructive grid’, creating specific intersecting points between the two. The hence extorted ‘point cloud’ configuration serves as a generic information field concerning highly specific coordinates, parameters and values for each individual point/constructive node it embodies. The relations between these points are directly linked with precise displacements of structural profiles and related scaling factors of cladding materials. Parallel to this object oriented modeling approach, a detailed database (soft/information component) is also maintained to administer the relations between the obtained points. To be able to derive constructible structural and cladding components from the point cloud configuration customized Scripts (combination of Lisp and Max scripts) process the point cloud database. The programmed script-routines, iteratively run calculations to generate steel-wireframes, steel lattice-structure and cladding panels along with their dimensions and execution drawing data. Optimization-routines are also programmed to make rectifications and small adjustments in the calculated data. This precise information is further communicated with CNC milling machines to manifest complex sectional profiles formulating the construct hence enabling timely and effective construction of the conceptualized form.
series ACADIA
email n.biloria@bk.tudelft.nl
last changed 2005/10/25 16:52

_id ascaad2006_paper6
id ascaad2006_paper6
authors Biloria, Nimish; Kas Oosterhus, and Cas Aalbers
year 2006
title Design Informatics: a case based investigation into parametric design scripting and CNC based manufacturing techniques
source Computing in Architecture / Re-Thinking the Discourse: The Second International Conference of the Arab Society for Computer Aided Architectural Design (ASCAAD 2006), 25-27 April 2006, Sharjah, United Arab Emirates
summary The research paper exemplifies a novel information integrated design technique developed at ONL (Oosterhuis and Lenard), Netherlands, specifically appropriated for manifesting complex geometric forms. The ‘informed design technique’, apart from being highly instrumental in conceptualizing and generating the geometric component constituting architectural form in a parametric manner, is also efficiently utilized for precise computer aided manufacturing and construction of the speculated form. Geometric complexities inherent in contemporary architectural constructs and the time spent in appropriation of such topologies, fueled the ‘informed design’ approach, which caters to issues of timely construction, precision oriented design and production (visual and material) and parametric modeling attuned to budgetary fluctuations. This designresearch approach has been tested and deployed by ONL, for conceiving ‘the Acoustic Barrier’ project, Utrecht Leidsche Rijn in the Netherlands and is treated as a generic case for exemplifying the ‘informed design’ technique in this research paper. The design methodology encourages visualizing architectural substantiations from a systems perspective and envisages upon a rule based adaptive systems approach involving extrapolation of contextual dynamics/ground data in terms of logical ‘rules’. These rules/conditionalities form the basis for spawning parametric logistics to be mapped upon geometric counterparts exemplifying the conception. The simulated parametric relations bind dimensional aspects (length, width, height etc.) of the geometric construct in a relational manner, eventually culminating in a 3D spatial envelope. This evolved envelope is subsequently intersected with a ‘parametric spatio-constructive grid’, creating specific intersecting points between the two. A pattern of points attained from this intersection: ‘the point cloud’ serves as a generic information field concerning highly specific coordinates, parameters and values for each individual point/constructive node it embodies. The relations between these points are directly linked with precise displacements of structural profiles and related scaling factors of cladding materials. Parallel to this object oriented modeling approach, a detailed database (soft/information component) is also maintained to administer the relations between the obtained points. To be able to derive constructible structural and cladding components from the point cloud configuration customized Scripts (combination of Lisp and Max scripts) process the point cloud database. The programmed scriptroutines, iteratively run calculations to generate steel-wire frames, steel lattice-structure and cladding panels along with their dimensions and execution drawing data. Optimization-routines are also programmed to make rectifications and small adjustments in the calculated data. This precise information is further communicated with CNC milling machines to manifest complex sectional profiles formulating the construct thus enabling timely and effective construction of the conceptualized form.
series ASCAAD
email N.Biloria@bk.tudelft.nl
last changed 2007/04/08 17:47

_id acadia13_025
id acadia13_025
authors Cordero Maisonet, Sixto; Smith, Austin
year 2013
title Responsive Expansion
source ACADIA 13: Adaptive Architecture [Proceedings of the 33rd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-926724-22-5] Cambridge 24-26 October, 2013), pp. 25-32
summary Although commonly considered problematic within the wider range of standardized isotropic construction materials, wood’s mechanical deficiencies are simultaneously an asset for the adventurous designer. These anisotropic and organic characteristics can be critically investigated, even exaggerated, with the possibility of productively yielding a complex and adaptive building material.Given wood’s fibrous make-up, as derived from its ecological function as an evaporative capillary system, wood as a material is predisposed to react to environmental and contextual fluctuations—moisture in particular. As a consequence of its cellular and chemical anatomy, wood—unlike other standard construction materials—will morphologically react to changes in moisture. This reactivity is derived from interactions such as rehydration and swelling at the cellular level which accumulate to induce formal transformations at the macro level. This responsiveness, when coupled with the affordances of industrial standardization, reframes wood within architecture as a reactive material capable of consistent transformation well-suited to parametric definition within computational modeling.
keywords Complex Systems: complex, adaptive, expansion, wood, material investigation, emergent and self-organizing systems
series ACADIA
type Normal Paper
email sacm@mit.edu
last changed 2014/01/11 08:13

_id 1d4e
authors Engeli, Maia and Miskiewicz-Bugajski, Malgorzata
year 1999
title A Collectively Designed Information Landscape
source AVOCAAD Second International Conference [AVOCAAD Conference Proceedings / ISBN 90-76101-02-07] Brussels (Belgium) 8-10 April 1999, pp. 47-59
summary Information Landscape is one of several courses in which we explore the potential of networked environments to support creative, collaborative design processes. 180 architecture students of the first semester are participating in this course. They work in pairs. The design of an "Information Landscape" is the goal, it is a virtual terrain that is formed by the participants over time and has landmarks that lead to specific information. The location and visual appearance of the more than 400 landmarks help to remember which information is connected to them. The design of the landscape happens in five steps and is related to the tasks in the architectural design class. The collectively designed product can reach qualities beyond the possible achievements of a single person. An environment that supports such design goals must provide for motivation, transparency and support. The common product has to include a tolerance towards fluctuations in the quality of the contributions.
series AVOCAAD
email engeli@arch.ethz.ch, bugajski@arch.ethz.ch
last changed 2005/09/09 08:48

_id caadria2019_624
id caadria2019_624
authors Gupta, Sachin Sean, Jayashankar, Dhileep Kumar, Sanandiya, Naresh D, Fernandez, Javier G. and Tracy, Kenneth
year 2019
title Prototyping of Chitosan-Based Shape-Changing Structures
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 2, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 441-450
summary In the built environment, the typical means of achieving responsive changes in the physical features of a structure is through energy-intensive actuation mechanisms that contradict the intended goal of energy-efficient performance. Nature offers several alternative energy-free examples of achieving large-scale shape change through passive actuation mechanisms, such as the intrinsic response of water-absorbing (hygroscopic) materials to humidity fluctuations. We utilize this principle of passive actuation in the context of chitosan biopolymer, a material demonstrating a combination of mechanical strength and hygroscopic potential that enables it to serve for both load-bearing and actuation purposes. By inserting biocomposite films of chitosan as dynamic tensile members into a space truss, a structural system is constructed whose variable structural performance is manipulated and expressed as a large-scale, programmable, and fast-acting shape change. We present a method for rationalizing this responsive structural system as an assembly using a combination of materials engineering and digital design and fabrication. As a proof-of-concept, a two-meter-long fiber-reinforced cantilevering truss prototype was designed and fabricated. The truss transforms in minutes from one shape that shelters the interior from rain to another shape that acts as an air foil to increase ventilation.
keywords Passive Actuation; Chitosan; Structural Assembly; Digital Fabrication
series CAADRIA
email jayashankar@sutd.edu.sg
last changed 2019/04/16 08:25

_id diss_hensen
id diss_hensen
authors Hensen, J.L.M.
year 1991
title On the Thermal Interaction of Building Structure and Heating and Ventilating System
source Eindhoven University of Technology
summary In this dissertation, developments in the field of building performance evaluation tools are described. The subject of these tools is the thermal interaction of building structure and heating and ventilating system. The employed technique is computer simulation of the integrated, dynamic system comprising the occupants, the building and its heating and ventilating system. With respect to buildings and the heating and ventilating systems which service them, the practical objective is ensuring thermal comfort while using an optimum amount of fuel. While defining the optimum had to be left for other workers, the issue of thermal comfort is addressed here. The conventional theory of thermal comfort in conditions characteristic for dwellings and offices assumes steady-state conditions. Yet thermal conditions in buildings are seldom steady, due to the thermal interaction between building structure, climate, occupancy, and auxiliary systems. A literature rewiew is presented regarding work on thermal comfort specifically undertaken to examine what fluctuations in indoor climate may be acceptable. From the results, assessment criteria are defined. Although its potentials reach beyond the area of Computer Aided Building Design, a description is given of building and plant energy simulation within the context of the CABD field of technology. Following an account of the present state-of-the-art, the choice for starting from an existing energy simulation environment (ESPR) is justified. The main development areas of this software platform - within the present context - are identified as: fluid flow simulation, plant simulation, and their integration with the building side of the overall problem domain. In the field of fluid flow simulation, a fluid flow network simulation module is described. The module is based on the mass balance approach, and may be operated either in standalone mode or from within the integrated building and plant energy simulation system. The program is capable of predicting pressures and mass flows in a user-defined building / plant network comprising nodes (ie building zones, plant components, etc) and connections (ie air leakages, fans, pipes, ducts, etc), when subjected to flow control (eg thermostatic valves) and / or to transient boundary conditions (eg due to wind). The modelling and simulation techniques employed to predict the dynamic behaviour of the heating and ventilating system, are elaborated. The simultaneous approach of the plant and its associated control is described. The present work involved extensions to the ESPR energy simulation environment with respect to robustness of the program, and with respect to additional plant simulation features, supported plant component models and control features. The coupling of fluid flow, plant side energy and mass, and building side energy simulation into one integrated program is described. It is this "modular-simultaneous" technique for the simulation of combined heat and fluid flow in a building / plant context, which enables an integral approach of the thermal interaction of building structure and heating and ventilating system.

A multi stage verification and validation methodology is described, and its applicability to the present work is demonstrated by a number of examples addressing each successive step of the methodology. A number of imaginary and real world case studies are described to demonstrate application of the present work both in a modelling orientated context and in a building engineering context. Then the general conclusions of the present work are summarized. Next and finally, there are recommendations towards possible future work in the areas of: theory, user interface, software structure, application, and technology transfer.

series thesis:PhD
last changed 2003/12/15 13:43

_id caadria2013_217
id caadria2013_217
authors Kolodziej, Przemyslaw and Jozef Rak
year 2013
title Responsive Building Envelope as a Material System of Autonomous Agents
source Open Systems: Proceedings of the 18th International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2013) / Singapore 15-18 May 2013, pp. 945-954
wos WOS:000351496100097
summary The paper represents the concept of an abstract model of the Responsive Building Envelope (RBE), founded on pre-programmed material’s behaviour. The assumed model of the responsive building envelope is based on the idea of material autonomous agents that control default parameters of building’s energies like ventilation, humidity, light volume, radiation, temperature, etc., by materials’ geometry deformation. The agent is a material system, built with the Electroactive Polymers (EAPs) actuators which react to the environment’s fluctuations continuously and independently from other agents. The model of a responsive envelope is a cluster of self-reliant units which control the primary characteristic of the building environment in an analogous way to the homeostasis system of a living organism. By decentralization the system becomes more stable and reliable. The CFD simulation was created from the schematic model of the RBE’s performance to test the presented design concepts.  
keywords Responsive system, Autonomous agent, Electroactive Polymers (EAPs), Homeostatic cycle, CFD simulation 
series CAADRIA
email 1x1studio@gmail.com
last changed 2016/05/16 09:08

_id 256b
authors Martens, Bob and Herbert, Peter
year 2002
title Virtual Reconstruction of Synagogues Systematic Maintenance of Modeling Data
source Connecting the Real and the Virtual - design e-ducation [20th eCAADe Conference Proceedings / ISBN 0-9541183-0-8] Warsaw (Poland) 18-20 September 2002, pp. 512-517
summary Computer-assisted reconstruction of no-longer existent (architectural) objects and their surroundings practically amounts to a “virtual comeback”. Irreversible destruction having removed identity-establishing buildings from the urban surface for all times is the principal cause for the attempt of renewed imaginating. Following the destruction of the so-called “Reichskristall-Night” of November 1938 the synagogues of the Jewish community in Vienna surely are to be considered for a virtual reconstruction. 60 years later, in the commemorative year of 1998 the first synagogue reconstruction was initiated. The medium-range goal, however, aims at the reconstruction of at least ten further synagogues within a project to be carried out in stages to be pursued over a period of several years. Fluctuations concerning the people involved in handling also call for a structure to be tracked down later on. This contribution deals with handling of modeling in a systematic manner aiming at a traceable data structure being of utmost importance for subsequent use and following-up work.
series eCAADe
email b.martens@tuwien.ac.at
last changed 2002/09/09 17:19

_id acadia09_66
id acadia09_66
authors Menges, Achim
year 2009
title Performative Wood: Integral Computational Design for Timber Constructions
source ACADIA 09: reForm( ) - Building a Better Tomorrow [Proceedings of the 29th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-9842705-0-7] Chicago (Illinois) 22-25 October, 2009), pp. 66-74
summary Wood differs from most building materials in that it is a naturally grown biological tissue. Thus wood displays significant differentiation in its material makeup and structure as compared to most industrially produced, isotropic materials. Upon closer examination wood can be described as an anisotropic natural fiber system with different material characteristics and related behavior in different directions relative to the main grain orientation. Because of its differentiated internal capillary structure wood is also hygroscopic. It absorbs and releases moisture in exchange with the environment and these fluctuations cause differential dimensional changes. In architectural history the inherent heterogeneity of wood and the related more complex material characteristics have been mainly understood as a major deficiency by the related crafts, timber industry, engineers and architects alike. This paper will present an alternative design approach and associated computational design tools that aim at understanding wood’s differentiated material make up as its major capacity rather than a deficiency. Along two design experiments the related research on an integral computational design approach towards unfolding wood’s intrinsic material characteristics and performative capacity will be discussed. The first experiment explores the anisotropic characteristics of wood by exploiting the differential bending behavior in relation to the local induction of forces through which a specific overall morphology can be achieved. The second experiment focuses on the hygroscopic property of wood as the base for developing a surface structure that responds to changes in relative humidity with no need for any additional electronic or mechanical control.
keywords Wood, materiality, prototype, performance, responsive design
series ACADIA
type Normal paper
email achim.menges@icd.uni-stuttgart.de
last changed 2009/11/26 16:44

_id caadria2006_237
id caadria2006_237
authors N.BILORIA, K.OOSTERHUIS, C. AALBERS
year 2006
title DESIGN INFORMATICS: (A case based investigation into parametric design, scripting and CNC based manufacturing techniques)
source CAADRIA 2006 [Proceedings of the 11th International Conference on Computer Aided Architectural Design Research in Asia] Kumamoto (Japan) March 30th - April 2nd 2006, 237-244
summary The research paper exemplifies a novel information integrated design technique developed at ONL (Oosterhuis and Lenard), Netherlands, specifically appropriated for envisaging complex geometric forms. The ‘informed design technique’, apart from being highly instrumental in conceptualizing and generating the geometric component constituting architectural form in a parametric manner, is also efficiently utilized for precise computer aided manufacturing and construction of the speculated form. Geometric complexities inherent in contemporary architectural constructs and the time spent in appropriation of such topologies, fueled the ‘informed design’ approach, which caters to issues of timely construction, precision oriented design and production (visual and material) and parametric modeling attuned to budgetary fluctuations. This design-research approach has been tested and deployed by ONL, for conceiving ‘the Acoustic Barrier’ project, Utrecht Leidsche Rijn in the Netherlands and is treated as a generic case for exemplifying the ‘informed design’ technique in this research paper. The design methodology encourages visualizing architectural substantiations from a systems perspective and envisages upon a rule based adaptive systems approach involving extrapolation of contextual dynamics/ground data in terms of logical ‘rules’. These rules/conditionalities form the basis for spawning parametric logistics to be mapped upon geometric counterparts exemplifying the conception. The simulated parametric relations bind dimensional aspects (length, width, height etc.) of the geometric construct in a relational manner, eventually culminating in a 3D spatial envelope. This evolved envelope is subsequently intersected with a ‘parametric spatio-constructive grid’, creating specific intersecting points between the two. The hence extorted ‘point cloud’ configuration serves as a generic information field concerning highly specific coordinates, parameters and values for each individual point/constructive node it embodies. The relations between these points are directly linked with precise displacements of structural profiles and related scaling factors of cladding materials. Parallel to this object oriented modeling approach, a detailed database (soft/information component) is also maintained to administer the relations between the obtained points. To be able to derive constructible structural and cladding components from the point cloud configuration customized Scripts (combination of Lisp and Max scripts) process the point cloud database. The programmed script-routines, iteratively run calculations to generate steel-wire frames, steel lattice-structure and cladding panels along with their dimensions and execution drawing data. Optimization-routines are also programmed to make rectifications and small adjustments in the calculated data. This precise information is further communicated with CNC milling machines to manifest complex sectional profiles formulating the construct hence enabling timely and effective construction of the conceptualized form.
series CAADRIA
email N.Biloria@bk.tudelft.nl, oosterhuis@oosterhuis.nl, aalbers@oosterhuis.nl
last changed 2006/04/17 16:48

_id ecaade2017_124
id ecaade2017_124
authors Pantazis, Evangelos and Gerber, David
year 2017
title Emergent order through swarm fluctuations - A framework for exploring self-organizing structures using swarm robotics
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 1, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 75-84
summary In modern architecture, construction processes are based on top down planning, yet in nature but also in vernacular architecture, the shape of shelters/nests is the result of evolutionary material processes which takes place without any global coordination or plan. This work presents a framework for exploring how self-organizing structures can be achieved in a bottom up fashion by implementing a swarm of simple robots(bristle bots). The robots are used as a hardware platform and operate in a modular 2D arena filled with differently shaped passive building blocks. The robots push around blocks and their behaviour can be programmed mechanically by changing the geometry of their body. Through physical experimentation and video analysis the relationships between the properties of the emergent patterns (size, temporal stability) and the geometry of the robot/parts are studied. This work couples a set of agent based design tools with a robust robotic system and a set of analysis tools for generating and actualising emergent 2D structures.
keywords Multi Agent Systems; Generative Design; Swarm Robotics; Self-organizing patterns
series eCAADe
email epantazi@usc.edu
last changed 2017/09/13 13:12

_id acadia16_244
id acadia16_244
authors Ramirez-Figueroa, Carolina; Hernan, Luis; Guyet, Aurelie; Dade-Robertson, Martyn
year 2016
title Bacterial Hygromorphs: Experiments into the Integration of Soft Technologies into Building Skins
source ACADIA // 2016: POSTHUMAN FRONTIERS: Data, Designers, and Cognitive Machines [Proceedings of the 36th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-77095-5] Ann Arbor 27-29 October, 2016, pp. 244-253
summary The last few years have seen an increase in the interest to bring living systems into the process of design. Work with living systems, nonetheless, presents several challenges. Aspects such as access to specialists’ labs, samples of living systems, and knowledge to conduct experiments in controlled settings become barriers which prevent designers from developing a direct, material engagement with the material. In this paper, we propose a design methodology which combines development of experiments in laboratory settings with the use of what we call material proxies, which refer to materials that operate in analogue to some of the behaviors observed in the target organism. We will propose that combining material proxies with basic scientific experimentation constitutes a form of direct material engagement, which encourages richer exploration of the design domain. We will develop this argument by reporting on our experience in designing and delivering the primer component of a themed design studio, structured around bacterial spores as hygroscopic components of building facades. The six-week design project asked students to consider the behavior of bacterial spores, and to imagine a number of systems in which they could be employed as actuators of a membrane system that responded to fluctuations in humidity. The module is interesting in that it negotiates some of the challenges often faced by designers who want to develop a material engagement with living systems, and to produce informed speculations about their potential in architectural design.
keywords actuators, architecture, building skins, artifical muscles, hygromorphs, bacterial spores
series ACADIA
type paper
email p.c.ramirez-figueroa@newcastle.ac.uk
last changed 2016/10/24 11:12

_id 8331
authors Rasdorf, William J., Ulberg, Karen J. and Baugh, John W. Jr.
year 1987
title A Structure-Based Model of Semantic Integrity Constraints for Relational Databases
source International Journal of Engineering with Computers. Springer-Verlag, Spring, 1987. vol. 2: pp. 31- 39
summary Database management systems (DBMSs) are in widespread use because of the ease and flexibility with which they enable users to access large volumes of data. The use of DBMSs has spread from its origin in business applications to scientific and engineering applications as well. As engineers rely more and more on the computer for data storage, our ability to manually keep track of relationships between data and to ensure data accuracy is severely limited. The inherent fluctuations in engineering design data as well as its large volume, increase the difficulty of doing so. Ensuring data accuracy through the use of integrity constraints which limit or constrain the values of the data is a central aspect of DBMS use. Enforcing constraints (to the extend possible) is a job for the DBMS. This alleviates some of the burden placed on the user and database administrator to maintain the integrity of the database. In addition, it enables integrity constraints to be conceptually centralized and made available for inspection and modification instead of being scattered among application programs. Despite their importance, however, capabilities for handling integrity constraints in commercial DBMSs are limited and they lack adequate integrity maintenance support. In addition, a comprehensive theoretical basis for such support-the role of a constraint classification, representation, invocation, and use methodology-has yet to be developed. This paper presents a formalism that classifies semantic integrity constraints based on the structure of the relational database model. Integrity constraints are characterized by the portion of the database structure they access, whether one or more relations, attributes, or tuples. Thus, the model is completely general, allowing the identification, definition, and arbitrary specification of any constraint on a relational database. It also provides a basis for the implementation of a database integrity subsystem. Examples of each type of constraint are illustrated using a small engineering database, and various implementation issues are discussed
keywords civil engineering, relational database, constraints management
series CADline
last changed 2003/06/02 11:58

_id ijac20064201
id ijac20064201
authors Vollen, Jason; Clifford, Dale
year 2006
title The Peculiar Nodal Generator: a speculation
source International Journal of Architectural Computing vol. 4 - no. 2, 1-15
summary Economically abandoned cities as well as urban cores depopulated because of catastrophic events have spawned urban renewal projects of all varieties. Often these projects promote civic programs such as arenas, theaters, museums, and aquariums as replacements for what was once an interactive public realm. Unfortunately the realization of these large programs promotes a disconnected series of sequestered activities rather than the prospect of a lively and potentially frenetic urban center governed by chance interactions. As an intervening strategy, this paper considers the possibility of implementing Nodal Generators, responsive systems that sense and adapt to environmental fluctuations to create localized microclimates capable of providing unscripted public space in the discarded and interstitial regions of the modern city. Inspired biotically and explored digitally, the Nodal Generators provide a linkage between community and technology using smart materials and adaptive assemblies. This paper details several speculations on the nature and form of these nodes and proposes their implementation into urban arid situations.We can postulate that while the nodal generators speculated upon in this paper might at first draw attention to themselves through spectacle, they will ultimately create a shared community experience through eventual inhabitation of that public space.
series journal
last changed 2007/03/04 06:08

_id ecaade2018_266
id ecaade2018_266
authors Zhang, Catty Dan and Sayegh, Allen
year 2018
title Multi-dimensional Medium-printing - Prototyping Robotic Thermal Devices for Sculpting Airflow
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 1, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 841-850
summary This research investigates the design and prototyping of fabrication machines that utilize multi-dimensional printing techniques to sculpt an invisible medium- airflow, inspired by its unique materiality, philosophical value, sensorial aspects, and increasing considerations of atmosphere and climate in architectural research and design. A series of robotic thermal devices were developed to modulate animated geometry sequences through scripted movements, designated coordinates, and temperature fluctuations. This paper elaborates in depth multi-stage developments and experiments that integrate various systems, fabrication processes, optical experiments and computational analysis. It situates the experimental process of the medium-driven fabrication with possible applications in architectural design as envisioning alternative environmental systems utilizing thermal byproducts under aesthetic and experiential considerations.
keywords Airflow; Robotics; Additive Manufacturing; Fabrication; Atmosphere
series eCAADe
email dzhang14@uncc.edu
last changed 2018/07/24 10:23

No more hits.

HOMELOGIN (you are user _anon_324486 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002