CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

authors Langton, C.G.
year 1996
title Artificial Life
source Boden, M. A. (1996). The Philosophy of Artificial Life, 39-94.New York and Oxford: Oxford University Press
summary Artificial Life contains a selection of articles from the first three issues of the journal of the same name, chosen so as to give an overview of the field, its connections with other disciplines, and its philosophical foundations. It is aimed at those with a general background in the sciences: some of the articles assume a mathematical background, or basic biology and computer science. I found it an informative and thought-provoking survey of a field around whose edges I have skirted for years. Many of the articles take biology as their starting point. Charles Taylor and David Jefferson provide a brief overview of the uses of artificial life as a tool in biology. Others look at more specific topics: Kristian Lindgren and Mats G. Nordahl use the iterated Prisoner's Dilemma to model cooperation and community structure in artificial ecosystems; Peter Schuster writes about molecular evolution in simplified test tube systems and its spin-off, evolutionary biotechnology; Przemyslaw Prusinkiewicz presents some examples of visual modelling of morphogenesis, illustrated with colour photographs; and Michael G. Dyer surveys different kinds of cooperative animal behaviour and some of the problems synthesising neural networks which exhibit similar behaviours. Other articles highlight the connections of artificial life with artificial intelligence. A review article by Luc Steels covers the relationship between the two fields, while another by Pattie Maes covers work on adaptive autonomous agents. Thomas S. Ray takes a synthetic approach to artificial life, with the goal of instantiating life rather than simulating it; he manages an awkward compromise between respecting the "physics and chemistry" of the digital medium and transplanting features of biological life. Kunihiko Kaneko looks to the mathematics of chaos theory to help understand the origins of complexity in evolution. In "Beyond Digital Naturalism", Walter Fontana, Guenter Wagner and Leo Buss argue that the test of artificial life is to solve conceptual problems of biology and that "there exists a logical deep structure of which carbon chemistry-based life is a manifestation"; they use lambda calculus to try and build a theory of organisation.
series other
references Content-type: text/plain
last changed 2003/04/23 13:14
HOMELOGIN (you are user _anon_309662 from group guest) Works Powered by SciX Open Publishing Services 1.002