CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

authors Pang, King Wah
year 2001
title A Process planning and Optimization System for Laminated Object Manufacturing Application
source Hong Kong University of Schience and Technology (People’s Republic of China)
summary Rapid Prototyping (RP) technologies have emerged as a powerful set of manufacturing technologies in recent years. While these technologies invariably provide tremendous time-savings over traditional methods of manufacture of design prototypes, many are still quite inefficient. This thesis examines two ideas; first, that these processes can be optimized greatly by using better process planning; second, that several of these RP technologies use similar core planning technologies for optimization. The first hypothesis is verified in this thesis by presenting an improved process planning system for one RP technology, Laminated Object Manufacturing (LOM). The framework proposes the use of computational geometry and optimization tools at two levels to reduce process time and material wastage. Geometric techniques are used for process planning at the 3D part level. A genetic algorithm (GA) based path optimization technique is used for path planning optimization at the layer level. The second observation led to the development of an open architecture planning system for a host of RP technologies. A test-bed software system is described in this thesis. Evaluation on the performance of the new methodology is also provided. The methodologies developed can work equally well with the current industry standard STL format for storing object CAD data as well as direct slice data computed from the exact solid model of a part.
keywords Industrial Engineering; Mechanical Engineering
series thesis:PhD
references Content-type: text/plain
last changed 2003/02/12 21:37
HOMELOGIN (you are user _anon_670167 from group guest) Works Powered by SciX Open Publishing Services 1.002