CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

authors Rieber, L.
year 1994
title Computers Graphics, and Learning
source Brown & Benchmark, Madison
summary The first of the topics begins with an overview of instructional computer graphics. This leads into an overview of the status of instructional visual research including discussions on visual perception, visual cognition, and theories on storing visual information in short-term and long-term memory. More practical application information is found in the next few chapters covering when and how static and animated graphics should be integrated into computer based instruction. The book concludes with a consideration of the role visuals play with multimedia. The useful information of each chapter is delivered with a cautious and wise nature. Rieber introduces his book with the first principle of instructional graphics, which I found to be very insightful. It reads, "There are times when pictures can aid learning, times when pictures do not aid learning but do no harm, and times when pictures do not aid learning and are distracting." The general premise throughout the book is that learning is paramount and should take center stage. He further warns the instructional designer about becoming "technocentric" (this is where technology dictates decision making) and recommends that media decisions not be made untilother instructional decisions are made. Again and again, from chapter to chapter, the reader is reminded of this underlying premise which made this book particularly effective. Another strength was the comprehensive nature of the book. There was an excellent balance of theory, research, and application to ensure the reader will gain the knowledge for appropriate integration of graphics into instructional materials. The theoretical information covers the role of visuals in communication and education, quoting many research sources for validation. There is an overview of three types of instructional graphics (representational, analogical, and arbitrary) and an analysis of their possible use in Gagneís domains of learning. Rieber states that the design of instructional graphics is strongly influenced by the inter-relationships and interdependency of the five domains. To help the reader choose the correct graphic for the job intended, a section describing the five applications of instructional graphics (cosmetic, motivation, attention-gaining, presentation, and practice) is included. It is recognized that these applications originated from Gagne's nine events of instruction.
series other
references Content-type: text/plain
last changed 2003/04/23 13:14
HOMELOGIN (you are user _anon_138978 from group guest) Works Powered by SciX Open Publishing Services 1.002