CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
id acadia19_664
authors Koshelyuk, Daniil; Talaei, Ardeshir; Garivani, Soroush; Markopoulou, Areti; Chronis, Angelo; Leon, David Andres; Krenmuller, Raimund
year 2019
title Alive
source ACADIA 19:UBIQUITY AND AUTONOMY [Proceedings of the 39th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-59179-7] (The University of Texas at Austin School of Architecture, Austin, Texas 21-26 October, 2019) pp. 664-673
summary In the context of data-driven culture, built space still maintains low responsiveness and adaptability. Part of this reality lies in the low resolution of live information we have about the behavior and condition of surfaces and materials. This research addresses this issue by exploring the development of a deformation-sensing composite membrane material system following a bottom-up approach and combining various technologies toward solving related technical issues—exploring conductivity properties of graphene and maximizing utilization within an architecture-related proof-of-concept scenario and a workflow including design, fabrication, and application methodology. Introduced simulation of intended deformation helps optimize the pattern of graphene nanoplatelets (GNP) to maximize membrane sensitivity to a specific deformation type while minimizing material usage. Research explores various substrate materials and graphene incorporation methods with initial geometric exploration. Finally, research introduces data collection and machine learning techniques to train recognition of certain types of deformation (single point touch) on resistance changes. The final prototype demonstrates stable and symmetric readings of resistance in a static state and, after training, exhibits an 88% prediction accuracy of membrane shape on a labeled sample data-set through a pre-trained neural network. The proposed framework consisting of a simulation based, graphene-capturing fabrication method on stretchable surfaces, and includes initial exploration in neural network training shape detection, which combined, demonstrate an advanced approach to embedding intelligence.
series ACADIA
type normal paper
full text file.pdf (3,438,118 bytes)
references Content-type: text/plain
last changed 2019/12/18 08:03
pick and add to favorite papersHOMELOGIN (you are user _anon_809372 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002