id |
acadia17_600 |
authors |
Tabrizian, Payam; Harmon, Brendan; Petrasova, Anna; Petras, Vaclav; Mitasova, Helena; Meentemeyer, Ross |
year |
2017 |
title |
Tangible Immersion for Ecological Design |
doi |
https://doi.org/10.52842/conf.acadia.2017.600
|
source |
ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 600- 609 |
summary |
We introduce tangible immersion要irtual reality coupled with tangible interaction葉o foster interdisciplinary collaboration in a critical yet creative design process. Integrating tangible, embodied interaction with geospatial modeling and immersive virtual environments (IVE) can make 3D modeling fast and natural, while enhancing it with realistic graphics and quantitative analytics. We have developed Tangible Landscape, a technology that links a physical model with a geographic information system and 3D-modeling platform through a real-time cycle of interaction, 3D scanning, geospatial computation, and 3D rendering. With this technology, landscape architects, other professionals, and the public can collaboratively explore design alternatives through an iterative process of intuitive ideation, geocomputational analysis, realistic rendering, and critical analysis. This is demonstrated with a test case for interdisciplinary problem-solving, in which a landscape architect and geoscientist use Tangible Landscape to collaboratively design landforms, hydrologic systems, planting, and a trail network for a brownfield site. Using this tangible immersive environment they rapidly explored alternative scenarios. We discuss how the participants used real-time analytics to collaboratively assess trade-offs between environmental and experiential factors, balancing landscape complexity, biodiversity, remediation capacity, and aesthetics. Together they explored how the relationship between landforms and natural processes affected the performance of the designed landscape. Technologies that couple tangible geospatial modeling with IVEs have the potential to transform the design process by breaking down disciplinary boundaries, but may also offer new ways to imagine space and democratize design. |
keywords |
design methods; information processing; simulation & optimization; collaboration; VR; AR; mixed reality |
series |
ACADIA |
email |
|
full text |
file.pdf (3,693,080 bytes) |
references |
Content-type: text/html
Access Temporarily Restricted
Access Temporarily Restricted
Too many requests detected. Please wait 60 seconds or verify that you are a human.
If you are a human user and need immediate access, you can click the button below to continue:
If you continue to experience issues, please open a ticket at
papers.cumincad.org/helpdesk
|
last changed |
2022/06/07 07:56 |
|