Working on Icons - Learning from Simulation
Wolf-Michael Tschuppik (tschuppik@hotmail.com)

Vienna University of Technology, Austria

Keywords: Full-scale Simulation, Architectural Design, Perception

Abstract
This contribution aims at making simulation understood as an interpretable medium. To this end the individual components of simulation are regarded as three-dimensional icons, which issue a “blurred” and thus interpretable image when put together. The title-providing learning potential has been developed in line therewith by the author.

Fig. 1 Baudrillard Table/Lamp.
On preparing this contribution the culture pages of magazines were full of photos by Jean Baudrillard, hitherto only known due to this philosophical writings. According to Baudrillard photos are the only means of releasing motionless objects from the hectic and noisy world. The selected pictures doubtlessly impress by their contemplative, stoical tranquility. Time seems frozen in the pictures.

Fig. 2 Baudrillard Car/Mast.

Photography is simulation, both in accordance with a reproduction, a reproduction of reality - in this special case an American suburban scenery - and with making-belief, here in particular being completely motionless. Simulation always results in parallelly providing less information. Simulation represents merely a special segment of reality we know. In viewing the world through the windshield of a driving car we experience a simulation of our world. Baudrillard’s pictures show us on the one hand well known things, simultaneously, however, disclose completely new interrelations. In their distant artificialness and restriction things of everyday life are governed by a new world order, naturally under the provision that we are willing to register these. In semiotics the term simulation represents icons. In the world of our symbols the category becoming readily comprehensible by means of affinity to an other known object is referred to.
When we spot a so-called icon on our Windows or Mac-User Screen the entirety of our perceptive faculties are activated. We immediately rely upon all our experiences made, all perceptions gained in order to grasp the meaning of this “tiny” symbol. It can happen that the one or the other little icon remains untouched in a corner, as we do not manage to grasp it or no resemblance to a reference object occurs to us. By the way: this problem the NASA had to deal with, too. Let’s leave our well-known planet earth and enter into the world of ideas of possible extraterrestrials.

Fig. 3 Nasa Message.

Here is the visible message sent into space by scientists with every confidence, - but alas! - it also includes a very interesting detail regarding the symbol category of icons apart from various other problems in illustration.

May we hope that extraterrestrial cultures are familiar with hunting using bow and arrow, otherwise the depicted sign, an arrow head with curiously a damaged bent arrow rod could surely not be understood, thus the allocation of the human being to the appropriate planet would not result. It would, however, clearly explain why we still are lonesome in going round in circles through the solar system.
Dealing with icons requires fore-knowledge or experience in order to make head or tail of the scope for interpretation. But even relying on such previous knowledge we can readily be manipulated thinking we are aware of what others want us to see. This factual situation is clearly pointed out by a simple psychological demonstration.

In an experiment an X with a horizontal line above and below it was furnished together with one of the two terms: table and hour-glass. In reproducing the symbol it was observed that the sign differed in shape according to the term indicated. The term table made the lower horizontal line disappear, the hour-glass turned the crossed lines into curves. Consequently, dealing with simulations is subjected to the complex processes of perception, influencing and subjectivity thus seem inherent. Creation of simulation calls for a certain degree of abstraction whereas reading simulation requires interpreting. The weapon made up of arrow head and rod became a horizontal line with a triangle at its end. In two-dimensional representations of simulation the outlines of a weapon were readily available for simulation purposes, regarding three-dimensional representations this is not achieved as easily. The three-dimensional outlines of a house, i.e. a kind of a wire model, would only be made out as a house with difficulties. After all, a house consists of a certain number of walls, equivalent to surface, equalling heaviness, thus all in all a haptic experience. A house invites to be walked around and spatially and sensually impresses on our world. The architectural 1:1 simulation thus has taken on a great challenge. A brief survey through the world of simulation in full scale might prove meaningful in enumerating the tasks attached to this endeavour, would, however, quickly reach beyond the scope of this paper.

Therefore, let’s pick one example to demonstrate the basic problems involved: Here we are dealing with a simulation combining two leading architects from, however, different epochs, one being Mies van der Rohe and the other one the Dutch urbanist, theorist and star-architect Rem Koolhaas. A peculiarly anecdotic essay “The House That Made Mies” is included in his extensive work and theory-report “S,M,L,XL (Small, Medium, Large, X-Large). The title first suggests a possibly varying relation between objects and their creators, but that’s not all. Behind the play of inversion Kohlhaas develops the notable theory that Mies van der Rohe had anticipated elements characterizing only his significantly later works such as flowing, disappearing and continuance already in a true-scale architecture model of his early years. The ideational experiment culminates finally in a practically evolutionary deduction of the “curtainwall”, at the beginning and origin of which the above canvas model is said to have been. A 1:1 simulation thus is pronounced the trigger for one of the most sustainable developments of our century. At first
sight the considerations seem too daring to be taken seriously, the excitement accompanying such a theory, however, encourage us to look into the possible misleading configuration. One surely would assume that an object of such major significance had already been subjected to a series of analysis, but far from it!

![Simulation in True-Scale/Mies v. d. Rohe.](image)

The early project, Mies being no more than 26 at the time, has received hardly any attention. The only useful document thereto is a photo of the 1:1 simulated design, now owned by the Museum of Modern Art. Koolhaas registers the first “fleetingness” and “ease” famous for Mies’ later buildings in the described architectural “Fata Morgana”. On looking at the well-preserved black-and-white photo nowadays it seems amazing that the depicted object obviously never really existed, i.e. in reality in stone, as architecture is used to. Let us imagine ourselves back 85 years to the spot where the photographer must have stood to take the picture. In our thoughts we slowly approach the building. The silent photography gains in liveliness with every step. We may assume that spreaded canvas blows in the wind even if very well attached to the wood scaffolding. A look at the trees in the background tells us the season of year. The natural environment looks bleak, practically inanimate. Thus the cloth construction will seem far more lively to the viewer. The wall continues its silent struggle to get away from the supporting frame. Did this metamorphosis of such significance to architectural history begin on a misty, rainy day in fall? Let’s have a look at the relevant circumstances. The photographer could not help but suppress the external marginal conditions of simulation. The soft cloth walls turned into stone outside walls in his eyes and the wrapped up slat cage to elegantly proportioned rows of colonnades. How did the young Mies perceive the construction, did he also register to any extent what was being simulated or did he enjoy the peripherally existing simulation parameters. Mies surely delighted in good workmanship and he knows as to the processes of building and thus is capable of aestheticizing the individual intermediate steps.
Later in chronology: Having a look at the later work of van de Rohe, the House Farnsworth, we would surely discover the results of creative processes throughout the years aimed at simulating architectural configurations. The scaffolding is now completely exposed, whereby the challenge of interpretation regarding the object existing merely for a short moment in time is even more likely to take its course. We delight in analyzing and certifying the same sensitivity to our prototype as to the temple of residence based on the pedestal. Regarding the rather peculiar story the question as to the actual significance of a simulation of “reality” as described above arises. Considering the fact that Mies continued building for a decade after the model of the House Kröller-Müller without taking a single of the supposedly discovered aspects into account ideas of changes resulting from a solitary case seem insignificant. It cannot be denied, however, that certain characteristics of that peculiar prototype might have produced specific consequences of a certain nature regarding the architectural work of the architect. As explained in above simulations of Baudrillard it is the interpretability that matters. To discover the “curtainwall” in the model involves a distant and somewhat neutral approach in viewing the simulation. Strangeness is required. As already pointed out by Philostratus nobody would be able to understand a painted stallion of bull without knowing about the actual appearance of such. And we have learnt to read the Impressionists’ patches of coats of paint as a picture, the same as we are capable of identifying the arrow nowadays, as we know of its origin.

We always approach simulation with our full range of experience. We enter the site of reproduction and make-belief with a varying knowledge of rules and icons. As has been observed, simulation comprises working with icons, and, consequently the interpretation space related thereto. Finally, simulation does not exclusively take place in line with the specific preceding abstraction. In the course of the final interpretation of simulation just as much meaningful potential develops. The fuzziness and the omnipresent ambiguity of signals add to the development of creative interpretation and association.
The procedure described above deals with an approach to the challenge of interpretability of simulations in true-scale acting as a basic guideline to the subject of the publication “The Other Reality - Gestalt of True-scale Simulations in Architecture” [1].

Reference