
Interactive Rendering 1

Interactive
Computer
Rendering

Paul Richens and Simon Schofield

Martin Centre for Architectural and Urban Studies
University of Cambridge Department of Architecture
6 Chaucer Road
Cambridge CB2 2EB.

Summary
Interactive Rendering combines the geometrical precision of classical

computer graphics with the representational freedom of a paint program. It is more
sympathetic to the ways in which designers use images, and overcomes many of the
frustrations experienced in rendering from CAD models.

The scene is generated in a standard viewing application, but saved as a
specially enhanced raster image. The extra information allows the Interactive
Renderer to apply brushed-on rendering effects which are sensitive to the
perspective of the image. Effects can be applied locally or overall, and may be
overlaid, blended and erased to create complex combinations. A huge range of
treatments are obtainable, both photorealistic and not.

INTRODUCTION
If we compare the processes of making images with CAD,

and making them by hand, we see that they are profoundly
different. So the qualitative differences found in the respective
images are hardly surprising. The potential advantage of computer
rendering is in the rapid generation of images showing correct
perspective, lighting, and high levels of detail, once a model has
been created. It is upon this promise that CAD has gained much of
its popularity. But in practice, current rendering systems pose
significant problems to artists and designers, who must strive to
achieve an image, tentatively held in the mind, via a complex and
tedious process. This involves a lengthy cycle of altering obscure
input parameters to an algorithm that provides far from instant
feedback, then waiting for results and re-rendering with changed
parameters. The continuous organic growth of the hand-made
image is replaced by a series of disconnected and inconclusive
experiments - modifications made to the parameters may result in
changes which are hard to judge, because the previous rendering
(and its set of parameters) may not have been kept for
comparison’s sake. Viewing a succession of results may lead
eventually to a type of image-blindness, where the designer
becomes unable to remember where the image has come from or
where it is going.

Interactive Rendering 2

Hand methods, of the sort used in painting and drawing, are
immediately more responsive to the ways artists and designers want
to work by providing continuous, uninterrupted methods of image
construction and instantaneous feedback. The final image gains
quality, clarity and conviction more from the gradual process of
construction than it does from the original, isolated, conception in
the artist’s “mind’s eye”. The artist is able to make localised
changes, using diverse representational devices in a single image,
resulting in a richer structure than ever emerges from the “blanket”
render of a CAD system. The image can be pinned to the wall for
hours of gradual consideration before the next change is applied.
One can come back to an image the next day in order to cast a
fresh eye over it before attempting further refinements. All this
makes for a relatively stress-free and far more engaging process.
The subtleties and nuances eventually residing in the final hand-
made image are such that no amount of formal description and
parameterisation, of the sort required by a rendering algorithm,
could ever reproduce the same results.

The nearest computer-based counterpart to the traditional
approach to image-making is the digital paint system such as
Photoshop (Knoll, 1993). Indeed, it is common to see CAD images
moved to such a system for refinement. Unfortunately paint
systems offer no assistance in generating the complex perspectives
and tonal approximations produced by renderers. Computer based
paint systems expect the user to handle the intricacies of
perspective and tonality by eye alone.

Interactive Rendering 3

Rendering by computer
It is not intended to dwell on the technicalities of computer

rendering, but it is necessary to introduce the fundamental ideas
and terminology. For a full treatment, see Foley, van Dam et al.
(1990) .

A computer model of a building represents the salient points
by means of three-dimensional (x, y, z) co-ordinates, linked together
to define the boundaries of planes. Curved bodies are usually
approximated by small flat facets before they are rendered. The
process of rendering can be considered as a series of steps dealing
with: perspective, lighting, visibility, smoothing of curves, shadows,
and textures [Fig 1].

Perspective, which is hard to set-up on a drawing board, is
trivially easy to compute. The origin of the co-ordinates is chosen to
be at the station point, with the x-axis horizontal, and y-axis
vertical. The z-axis then points along the line of sight, and so
measures distance away from the eye. Each (x, y, z) co-ordinate is
replaced by (x/z, y/z, z/z), which has the effect of projecting objects
in perspective onto a picture plane at z=1. So perspective is
obtained simply by dividing by distance: an object twice as far as
another will appear at half the size.

Lighting is typically calculated at each vertex of a facet, taking
into account its orientation with respect to the light source, and its
reflectivity. Values inside the facet are obtained by a kind of
averaging. Smoothing is obtained by averaging between facets.
Shadows can be computed geometrically, but it takes a long time.
Light reflected from one surface onto another is generally ignored.

Deciding what is visible, which requires very little mental effort
from a draftsperson, is surprisingly difficult to compute. The
simplest algorithm, and the one most important for our purposes, is
called the z-buffer algorithm. The image to be created is divided
into tiny elements called pixels, arranged in a regular grid or raster.
(A small computer or video screen provides a raster of about
640x480 pixels.) The algorithm requires memory to record the
colour and brightness of each pixel - called a frame buffer - and
more memory to record the distance to each pixel - called the z-

1 Classical rendering algorithms.
Top left: simple flat shaded facets.
Top right: smoothing restores the

appearance of curved surfaces.
Bottom left: solid texture. Bottom
right: shadow casting and bump

mapping.

Interactive Rendering 4

buffer. In operation, each facet is broken down into pixels, and the
z-coordinate determined. Consider a point on a surface; we want to
find out whether it is in front of, or hidden by, a previous point
already rendered and stored in the z-buffer. If it is greater than the
value in the z-buffer (further away), nothing happens. If less, then
both the frame buffer and the z-buffer values are replaced with
those calculated for the new pixel. When all facets of all objects
have been scanned in this way, each pixel holds the result for the
nearest surface at that position, which of course is the one that is
visible. Finally the frame buffer is displayed on the screen - and the
z-buffer is discarded.

Texture mapping deals with materials that have some sort of
grain or patterning. For example a sample of brickwork can be
scanned, and then mapped repeatedly onto a wall. Solid textures,
which are usually calculated, are used to fake the grain of materials
like wood and marble.

The goal of computer graphics research has become what is
known as “photorealism”. A theoretically perfect rendering from a
computer model would be indistinguishable from a photograph of
the realised object. In order to achieve this we need to simulate in
more detail, and with greater precision, the interactions of light
with matter. One strand of current research is attending to indirect
lighting, colour bleeding and partial shadowing. Another studies
the effect of the micro-structure of materials on reflection, and a
third the effects of atmospheric haze. Each advance requires a more
refined model, and a great increase in the time taken to render a
scene. We begin to wonder whether it is all worthwhile.

The economics of computer rendering depend primarily on
the complexity of the model, usually estimated by a polygon count,
and secondarily on the sophistication of the optical simulation.
Models of a few thousand polygons can be rendered in an
elementary way in a few minutes on a typical desktop computer,
and in a fraction of a second on a specialised graphics workstation.
However photorealism demands a complex model, full of detail.
Large architectural models may run into hundreds of thousands of
polygons, and take months to build and days to render. Elements of
entourage, such as figures and vegetation, can be
disproportionately expensive: a tree needs at least 2000 polygons,
yet its detailed form is of no particular consequence.

The process of producing a rendering from such a detailed
model is painful and time-consuming. It involves choosing
viewpoints, assigning the optical properties of surfaces, placing
lights, defining and placing textures. To check the result requires a
trial render, which, if photorealism is intended, may take hours. It is
commonly found that it takes as many weeks to render a set of
images, as it does to build the geometric model in the first place.

Interactive Rendering 5

Objectives
Our work on architectural rendering by computer aims to

break out of some of these difficulties. We do so by questioning the
two fundamental assumptions underlying mainstream computer
graphics. One is the single-minded pursuit of the photorealistic
image: photographs do not communicate buildings very well, and
architects have rarely used hyper-realistic images to promote their
schemes. The second is the notion that rendering should be a
deterministic algorithm - where you set everything up in advance,
then press “GO” and wait for an exactly repeatable result. We
would prefer considered (but unconstrained) human intervention,
serendipity, and chance, to play a larger part.

The basis of our approach is to split the production of an
image into two stages. The first deals with perspective projection,
the determination of visibility, and possibly the casting of shadows -
in other words all the strictly geometrical tasks. This is handled by
conventional fast graphics techniques (the z-buffer algorithm), and
will not be considered further. The second stage, which is the
subject of this paper, turns this abstract geometrical solution into a
fully rendered image. Both stages are highly interactive, and provide
instantaneous feedback. The crucial data-structure that passes
information from the first stage to the second (called EPix) is
described later.

Early results provoked a good deal of interest from architects
experienced with CAD. With their help, we were able to formulate
some likely goals for the two-stage approach:

1. To allow for a more relevant, and economical, alternative to
photorealism, sharing instead some of the qualities of
painting, drawing and print-making.

2. To facilitate a “hand-held” technique, in place of the deter-
ministic algorithm, enabling an image to be finished interac-
tively in an hour or so. We have often noticed architects
tracing over and re-rendering their computer output by
hand. This is not entirely for the sake of the image: the
massaging of drawings is an essential stimulus to the archi-
tectural imagination - a fact not yet acknowledged by CAD
systems.

3. To allow a richer, rougher style of rendering to compensate
for lack of detail in the model, and to render entourage (such
as figures and trees) economically.

4. To enable montages of computer models with context photo-
graphs to be rendered in a consistent manner.

5. To allow for vagueness in presenting proposals. The
photorealistic image appears too definite, worked-out,
expensive and non-negotiable to be appropriate when
exploring tentative ideas.

6. To allow satisfactory images to be produced at low pixel
resolutions. The glossy smoothness of photorealism demands
high resolution (e.g. 4000 raster lines for a slide-maker),
which consumes huge resources. It should be possible to
make images matched to the qualities of low-cost raster-
oriented printers such as ink-jet and laser printers.

Interactive Rendering 6

Conventional rendering is most easily applied to shiny new
high-tech buildings, preferably isolated from any context.
Vernacular buildings using traditional materials in a landscape
setting are much harder. The ultimate challenge is to render a ruin
(think of Piranesi’s plates of Hadrian’s Villa) which has lost its
definite geometric form, whose materials are crumbling and
revealing inner layers of rough stuff, surrounded by debris, dank
and overgrown [Fig 2]. To render these by precise geometrical
modelling, and optically exact rendering, is wrongheaded. Precision
is not the issue. We hope, by overturning the conventional
approach to rendering, to find a way of handling ruins.

Related work
The simple technique of using a pen-plotter with loose,

wobbly pens was found to produce surprising and effective results
(Bakergem and Obata, 1992). Architectural students, who
previously fought shy of including any computer graphics in their
portfolios, felt far less inhibited over including these “freehand”
plots [Fig 3]. They offer several possible explanations for this; one is
that each drawing is unique in that the deviations of the pen
cannot be reproduced; another is that they are simply more visually
engaging – they seem to have more detail, or at least contain more
to look at.

2 Part of Hadrian’s Villa, from
Piranesi’s Antichità Romane.

Normal CAD techniques cannot
hope to produce a rendering of

ruins such as these.

3. Squiggly pen plot shows a
degree of liveliness not normally

found in mechanically plotted
drawings. However the congestion

in the background remains a
problem (courtesy W. Davis van

Bakergem, Washington University,
St Louis).

Interactive Rendering 7

Some of the fundamental ideas of Interactive Rendering (in
particular the separate treatment of geometry and appearance, and
the enriched pixel) were suggested by Perlin’s Pixel Stream Editor of
ten years ago (Perlin, 1985). However, it was far from interactive,
and required that each pixel should be processed independently,
which prohibits many desirable operations. The ideas of fractal
noise, turbulence and solid texture included in the same paper have
been immensely influential.

Perlin was rather vague about what data should be associated
with each pixel; Saito and Takahashi (1990) by contrast define a
comprehensive G-buffer that contains identifier, parametric
coordinates, world coordinates, depth and direction cosines. This is
used to support perspective space hatching and edge finding, with
the idea of making technical illustrations “comprehensible”. Many
of their ideas have been developed and implemented in 5D’s KATI
Renderer, intended for mechanical engineering illustration
(Glazzard, 1993). We differ in having some interest in ambiguity as
well as clarity, and preferring an interactive process to one that
batch treats a complete image. We have found it possible to reduce
the G-buffer to a single number, without serious loss of effect.

The idea of image space rendering using synthetic paint marks
was important in the genesis of our project. Similar ideas have been
published by Haeberli (1990), and have found their way into
commercial products such as Fractal Design Painter (Zimmer and
Hedges, 1991). It was about this time that the term “Non Photo
Realism” came into use (presumably by analogy with “Non Dairy
Creamer”); we prefer to avoid such a negative characterisation.

Three-dimensional painting by means of reverse texture
mapping was first described by Haeberli and Hanrahan (1990). It is
beginning to appear in commercial products, but requires very high
performance hardware to be interactive. It works purely in
perspective space.

The recent work on stroke textures by Winkenbank and
Salesin (1994) [Fig 4] is closer in spirit to ours, and is aimed
specifically at architectural rendering, but is much less interactive
than we would like.

The importance of indeterminate form and visual noise in
allowing the viewer scope to “project” his own imagination on to
an image was recognised long ago by Gombrich (1960) who points
out that it has been a commonplace of painting and drawing since
ancient times, and that it has been discussed theoretically by
Alberti, Leonardo and many others. The modern world of digital
image-making has been comprehensively surveyed by Mitchell
(1993).

Early work on this project has been described by Richens
(1994). A comprehensive review of non-photorealism can be found
in Lansdown and Schofield (1995).

4. Simulated pen and ink drawing
using procedurally generated
textures that can respond to

perspective and lighting (courtesy
G Winkenbach and D Salesin,

University of Washington, Seattle).

Interactive Rendering 8

REALISATION

Input - the enriched pixel format
Our concept of Interactive Rendering builds on the common

practice of refining CAD images in a paint system, such as
Photoshop, by transferring significantly more data to the finishing
program.

A conventional frame buffer contains three numbers for each
pixel, these being the brightness levels for the red, green and blue
guns in the colour tube that will present the image. We have
developed a new file format – The Enriched Pixel Format

(shortened to EPix) – that adds also the contents of the z-buffer,
and a third material buffer, which serves to classify the source from
which each pixel was derived (e.g. sky, ground, brick, glass). The z-
buffer gives, for each pixel, its distance from the eye [Fig 5]. The
EPix file also contains the perspective transformation used to
generate the image. It is possible to use this transformation
backwards (in conjunction with the z value) to recover the original
model coordinate for any pixel in the image.

In fact, a great deal of valuable information can be deduced
from the z-buffer. The z value for a single pixel tells you its distance.
By inspecting the z values of adjacent pixels, you can deduce the
orientation of the surface at that point. By looking a little further
you can calculate curvatures and deduce the presence of edges.

We use a slightly modified z-buffer rendering algorithm to
generate the EPix file. The first modification is simply to retain the z-
buffer, which is usually discarded. The material buffer is computed
by a simple trick; the scene is rendered without lighting, and with
the colour at each vertex set equal to the material tag for the facet.
The resulting frame buffer is saved as the EPix material buffer. Most
viewing applications could easily be modified to provide the same
data.

5. A z-buffer drawn as a
monochrome image. Brightness in
the printed image corresponds to

distance in the z-buffer; the
darkest areas are the closest.

Interactive Rendering 9

When the Interactive Renderer is started, it loads the EPix
image, and adds a second frame buffer (called the canvas) to
receive the output image. This may be initialised to the same
content as the input frame buffer, or any other image, or left
empty, as needed. Internally, additional buffers are used to control
the application of rendering effects, and to provide for “Undo” and
check-pointing of the work.

The interface
The user interface [Fig 6] consists of two parts – a painting

window and a tool box. Upon loading an EPix file, a copy of the
frame buffer is displayed in the window – this is the “canvas” on
which the user works. A rendering effect is chosen from a scrolling
list of possibilities pictured at the top left hand of the tool box.

Different effects require different controls, and the interface adapts
by assigning sliders and option buttons to specific parameters.
Certain controls are common to all effects, such as transparency (or
degree of effect), colour, and for brushed effects, brush size.
Settings can be saved in a palette (pictured in the centre of the tool
box), each button of which has a pictorial thumbnail reminder of
the effect – these can be saved and reloaded for later sessions. The
system has been written in such a way that it is easy to author and
add entirely new effects to the scrolling list.

6. Prototype user interface for an
Interactive Renderer.

Interactive Rendering 10

In addition to the sliders, most tools can be “trained” using
the second mouse-button, for example to control the orientation of
hatching, or the length of a brush stroke.

Brushing
Almost all the effects are applied by brush tools, similar in

concept to those in a conventional paint program, but with some
marked differences in behaviour. They do not require the
construction of elaborate stencils or masks, as they have their own
ways of achieving precision. The simplest of these is the material

matting function; at the start of a stroke, the material at the cursor
point is inspected and from then on the brush will only paint onto
parts of the scene with that same material type. Plane matting is
similar in its function, but instead of inspecting the material, it
looks at the z-buffer and restricts painting to coplanar pixels; hence
surfaces of a building, for instance, can be painted in isolation from
one another, and windows can be quickly in-filled with a dark
colour [Fig 7]. All effects can be applied using a hard or soft edged
brush, of varying size and intensity.

Paint types vary from an opaque “gouache”, which obliterates
whatever is painted over, to a transparent “ink”, which acts like a
varnish layer over the existing scene. Ink has proved to be the more
useful of the two; textures and colours can be applied to the scene
while preserving the lighting and shadow calculations in the original
frame.

A common problem evident in paint systems is in the
application of such translucent effects by a brush tool; often the
user will accidentally over-paint the same area twice resulting in a
doubling of the intensity of the effect in that region. We avoid the
possibility of accidental over-painting through an “accumulation
lock”. When set, the accumulation lock monitors the amount of
effect applied to each pixel and disallows any over-painting until the

7. Brushed-on opaque colour,
transparent ink and various

textures. The matting functions
make it easy to apply colour to a

single material (as on the
background), or a single plane (as

in the further pier).

Interactive Rendering 11

accumulation lock is released. Hence parts of a wall can be painted
with several different textures without the possibility of overlapping.
Fig 7 shows a wall rendered with two textures – a brick and a
vellum-render effect – which have been applied freehand; there is
no overlapping between the two effects.

Image space rendering
It is convenient to distinguish operations that work in the

image plane from the more advanced techniques that use the z-
buffer, and so can be considered as working in perspective space.
The simplest of the former, in our system, is the “Restore” brush,
which simply replaces whatever is in the output canvas with the
content of a previously saved image. So it is always possible to
recover from mistakes.

Mark-making techniques effectively repaint part of the image
by rapidly placing brush strokes on the canvas [Fig 8]. Strokes are
controllable in length, direction, straightness, and graininess. They
may have their own colour, or “pick up” the colour of the original
frame, or make a blend between the two. Marks may be precise (in
that they do not run across the boundary between different
materials) or loose. Marks may be scattered at random over the
image, or controlled closely by the mouse. Their effect is to
decrease the precision of the original image, and add a variable
amount of “noise” in the form of a surface texture.

8. Brush strokes pick up the
original tones, producing a soft

image with low detail, but a
certain amount of structured

visual noise. Used here to present
a master plan, where it is required

to convey something about the
landscape, and the approximate
size and position of buildings, as
yet undesigned. There is enough
noise to encourage the viewer to

imagine the details for himself.

Interactive Rendering 12

Image space hatching places more or less regular patterns of
lines on the image, with controllable angle, thickness, spacing and
orientation. They can respond to the underlying frame buffer by
changing some of these parameters [Fig 9]. Generally they respond
to the brightness of the image - for example hatching lines become
thicker or closer where the image is darker. A more sophisticated
response is to control the orientation of hatch lines by looking at
the gradient of the brightness; this is especially valuable in hatching
curved surfaces.

9. Experimental image space
hatching techniques, where the

lines respond in different ways to
the lighting of the scene: a. Lines

vary in weight. b Lines vary in
spacing. c Lines vary in weight and
direction. Lines are oriented at 45
degrees to the gradient (direction

of most rapid change) of the
lighting.

Interactive Rendering 13

Perspective space rendering
When drawing a quick sketch one is likely to use image space

hatching - for example a constant 45 degree slope used roughly to
distinguish light from dark. A more careful rendering will use
hatching with more control, to delineate the form and texture of
objects, as well as light and shade. These techniques, which must
refer to the z-buffer, we term perspective space rendering.

The simplest of them is the “Fog” brush, which places paint
of variable opacity on the output image. The opacity is controlled
directly by the z-buffer, so the paint is thicker where the distance is
greater. The effect is of fog, smoke, haze, or aerial perspective,

depending on the colour and intensity used [Fig 10b].
A second simple, but gratifying, effect is to use an edge-

detection filter to draw outlines. Edge detection is a standard
image-processing technique, which responds to the rate of change
of the brightness of a scene. The results tend to be the opposite of
what is wanted - for example heavy edges around shadows, where
the contrast is high, and light edges between parallel planes of a
building. We apply the same algorithm, not to the brightness values
in the frame-buffer, but to the distance values in the z-buffer. The
result is a sensitive line drawing, with silhouette edges emphasised
(great change in z), interior angles drawn lightly, and shadow edges
ignored altogether [Fig 10c].

The mathematical principles we use to apply textures in
perspective are the same as those employed in conventional
computer graphics, but the interactivity and control available is
much superior. Flat textures are obtained by scanning photographs,
or samples of actual materials. They are then brushed onto the
image, with full control of scale, orientation and intensity. The
perspective is corrected automatically, by projecting the sample
orthographically onto the plane of the pixels, or alternatively by
projecting from a fixed direction.

This technique can be used photorealistically, but has much
richer possibilities. Textures can be fully applied, or transparent and
overlaid, or combined with other kinds of hatching. Textures can be
drawn by hand, then scanned and mapped into perspective space.

10 Alternative treatments of the
same scene. a is the original

scene, with cast shadows, but
otherwise modelled and rendered

in the simplest possible way. b
has been interactively rendered
using several perspective space

techniques including
photographed textures, hand

drawn cut-outs, and fog. c uses
edge detection and hand-drawn

textures which are then applied in
perspective.

Interactive Rendering 14

Solid texturing is a technique which is conventionally used to
represent the grain of materials such as wood or marble. We find it
equally applicable to generating more abstract hatch patterns, such
as those employed in woodcut illustrations and other forms of
print-making. For example, regular horizontal hatching (brick
courses) can be rendered by defining a solid texture which consists
of a stack of horizontal planes at the appropriate spacing. The solid
texture brush converts each pixel back to the original model space,
checks whether it lies on a texture plane or not, and fills in the pixel
accordingly.

Solid textures are particularly easy to apply to curved surfaces
and complex forms. They are mathematically defined, so there is no
need for scanning, and it is relatively easy to make them respond to
the input frame buffer or z-buffer. It is also easy to combine them
with noise functions so as to obtain a controllable variation in
thickness, intensity or position. In conventional renderers these
effects are very difficult to control, because it takes a long time to
see the result on a trial rendering and the parameters for solid
textures are particularly arcain. Interactive Rendering, on the other
hand, gives immediate feedback and “undo” capability meaning
that effects can be arrived at through trail and error more quickly.

Compositing and modelling
Larger graphic elements, such as entire trees, vehicles and

human figures can be applied wholesale to the image, after some
brief preparation by the user. These are “cut-out” shapes,
generated from a scanned image, and prepared by adding an
alpha-mask (to define transparency) and an origin point. Like flat
textures, they can be generated either from photographic or drawn
material, and can be placed either to face the viewer or in the plane
of a surface; the difference is that they are placed as a unit, rather
than being brushed on.

Cut-outs inspect the z-buffer, and scale themselves according
to perspective. If a tree is partially masked by a building, the z-
buffer is used to calculate which parts are visible [Fig 10,11]. When
a cut-out is applied, not only does it modify the visual aspect of the
scene, it also modifies the z and material buffers of the EPix data.
So a second tree can be partially masked by the first, and the
surface of a tree can receive further treatment, such as brushing on
a texture. Compositing can be thought of as a modelling operation;
once a shape has been placed in the scene it behaves exactly as
though it was part of the original model and enjoys the benefits of
material and plane matting, as well as all the rendering operations.

One further effect, in the same category of modelling
operations, enables a new plane to be defined in the z-buffer by
painting what is effectively a “sheet of glass” into the z-buffer. In
fact it is commonly used to put glazing into blank window
openings, prior to using a texture brush to paint reflections. It can
also be used to fill in missing surfaces, or to extend a ground plane
to the horizon. Somewhat surprisingly, it can also be used in the
opposite sense - to extend the sky or other background into regions
where nearer surfaces are defined. The visible effect is to demolish
part of the model, producing a ruin [Fig 11].

Interactive Rendering 15

11 By extending the sky into the
upper storey, the building is

effectively reduced to a ruin.
Creepers are cut-outs that orient

themselves to the underlying
surface.

Further work
One can conceive of an interactive renderer (based on the

ray-tracing principle) which would refer constantly to the original
3D model instead of to the saved z-buffer. In some ways this would
be an advance, as it provides better access to information about
lighting and the geometry of surfaces, and would allow a greater
mix of modelling operations with the rendering. But such an
approach would be less responsive, especially with complex scenes,
whereas the EPix background guarantees that responsiveness is
completely unaffected by the complexity of the scene. This is a
considerable advantage, and suggests that a hybrid system might
be worth considering in future work.

Interactive Rendering 16

CONCLUSIONS
Interactive Rendering succeeds in redressing the legacy of

inappropriate images and the associated frustrations of using CAD
systems by re-investing in the judgement and skill of the artist or
designer, but without dispensing with the inherent advantages of 3-
D rendering. Not only does it produce better and more varied
images, it is significantly more enjoyable and rewarding to use. This
is achieved by supplementing the rendering process with wholly
interactive techniques, many of which pay scant regard to the
demands of photorealism.

The unerring photorealism of classical 3-D rendering is often
perceived as a problem by artists and designers. Interactive
Rendering enables the application of many alternative treatments to
the image. While photorealism of the sorts witnessed in
conventional computer images is entirely possible, it is with an eye
on the softer, more expressive, freer forms of representation seen in
traditional imagery that the system has been developed.

The output image is constructed gradually; techniques can be
easily overlaid and applied highly locally in ways difficult (or
impossible) to describe to an automated renderer. Applied
techniques can be erased and over-rendered. Residual traces of past
explorations and decision-making may, in fact, add richness to the
final image. The process can be interrupted and restarted without
difficulty. The result can even become the input for a further round
of rendering.

Interactive Rendering has really to be experienced to be
appreciated. It “looks” much like a paint program, but “feels” quite
substantially different. Initially this is because of the surprising but
agreeable helpfulness of the material and plane matting actions.
The difference deepens when the perspective rendering effects are
called into action, such as fog, texture brushes, or the placing of
cut-outs in perspective. These feel more like modelling, but are far
more visually oriented. The paradigm is new and distinct from what
has gone before; naming it in terms of the familiar is rather
problematical. “Three dimensional painting” describes pretty well
what it feels like. “Interactive rendering” describes what it does.

Interactive Rendering 17

The result of splitting the rendering process into two parts,
one dealing with geometry, the other with surface appearance,
while passing a sufficient amount of data between them, enables
both processes to become highly interactive, even on computers of
modest power. High interaction gives immediate feedback; the
consequence is that intention and realisation converge rapidly and
pleasurably [Fig 12].

While most of our initial objectives have been realised to a
satisfactory extent, somewhat elusive have been the pursuit of
“noisy” rendering techniques to compensate for lack of detail, and
to allow the viewer to project (in Gombrich’s sense) what he hopes

to see, and the related issues of rendering incomplete and tentative
proposals. We have had occasional successes, but lack a recipe for
reliably reproducing them. Problems of montage and entourage are
convincingly solved, as is the introduction of a much wider range of
graphical techniques, and adaptability to many forms of printing.
One thing, though, remains irksome. Despite our reservations about
classical photorealism, we have to admit that Interactive Rendering
turns out to be a very effective way of producing it.

12. A finished rendering using
multiple overlapping effects

(courtesy J Rollo, University of
Cambridge).

Interactive Rendering 18

Acknowledgements
Brian Logan, John Rees, John Rollo and Tim Wiegand at the Martin Centre

have made valuable contributions, as have many visitors, but especially Richard
Coyne, Iain Fraser and Bill Mitchell. Architects who have contributed ideas, and
projects to try them on, include Nicholas Ray, John Hare, Max Fawcett and Roger
Matthews. We are deeply grateful to Informatix Inc, for financial support, and to
Masanori Nagashima for his enthusiasm and far-sightedness.

References
Bakergem, W.D. van and Obata, G. (1992). Free-hand plotting – Is it live or is it

digital? In (ed) G.N. Schmitt, CAAD Futures ‘91. Vieweg, Wiesbaden.
Foley, J.D., van Dam, A. et al. (1990). Computer Graphics Principles and Practice,

2nd ed., Addison Wesley, Reading MA.
Glazzard, N. (1993). The KATI Renderer (software). 5D Inc, London.
Gombrich, E.H. (1960). Art and Illusion: A study in the psychology of pictorial

representation. Phaidon, London.
Haeberli, P. (1990). Painting by numbers: abstract image representation,

Computer Graphics, vol. 24, no. 4, ACM SIGGRAPH, pp. 207-214.
Haeberli, P. and Hanrahan, P. (1990). Direct WYSIWYG painting and texturing of

3-D shapes, Computer Graphics, vol. 24, no. 4, ACM SIGGRAPH, pp. 215-
224.

Knoll, T. et al. (1993). Photoshop (software). Adobe Systems Inc., Mount View
CA.

Mitchell, W.T. (1993). The Reconfigured Eye. MIT Press, Cambridge MA.
Perlin, K. (1985). An image synthesiser, Computer Graphics, vol. 19, no. 3,

ACM SIGGRAPH, pp 287-296.
Richens, P. (1994). Does knowledge really help? In (eds) G. Carrara and Y.E.

Kalay, Knowledge-Based Computer-Aided Design, pp. 305-325. Elsevier,
New York.

Saito, T. and Takahashi, T. (1990). Comprehensible rendering of 3-D shapes,
Computer Graphics, vol. 24, no. 4, ACM SIGGRAPH, pp. 197-206.

 Lansdown, J. and Schofield, S. (1995). Expressive rendering: an assessment and
review of non-photorealistic techniques, Computer Graphics and Applica-
tions Vol 15, (3) , IEEE, pp29-37.

Winkenbank, G. and Salesin, D.H. (1994). Computer generated pen-and-ink
illustration. In Computer Graphics, Proceedings, Annual Conference Series,
1994. ACM SIGGRAPH, pp. 91-100.

Zimmer, M. and Hedges, T. (1991). Fractal Design Painter (software). Fractal
Design Corporation, Aptos CA.

