
acadia’98
Association for Computer-Aided Design in Architecture

302

J. Michael Gerzso
Independent Researcher

104164.341@compuserve.com

303

Speculations on a
Machine-Understandable
CAD Language for Architecture

Un cadre de langage CAO: spéculations au sujet d'un langage
compréhensible-par-machines pour l'Architecture

Un des objectifs des recherches en CAO architectural a été
de produire des outils informatiques pour aider la conception, et
non seulement pour le dessin. Des travaux de ce genre ont été
présentés à ACADIA et d'autres conférences traitant de l'intelligence
artificielle, de banques de données, et de grammaires de formes,
entre autres. Dans chaque cas on sous entend l'existence d'un
langage pour ordinateur, sous une forme ou autre.

Le but de ce travail est de démontrer que le progrès au
niveau du développement de systèmes de design intelligents ('In-
telligent Design Systems', ou IDS) est directement lié aux progrès
au niveau des langages utilisés lors de l'implantation de ces
systèmes. À l'appui de notre argumentation, nous spécifions
d'abord les caractéristiques d'un IDS en termes d'un cadre
conceptuel de langages pour ordinateur dans un système DAO
en général, et ce que ça signifie de déveloper un langage
compréhensible par machines pour le DAO architectural en
particulier. Ce cadre est utile pour la classification des projets de
recherche, et pour l'élaboration d'un agenda de recherche en
DAO architectural.

One of the objectives of research in computer-aided de-
sign in architecture has been to make computer tools or instru-
ments for architectural design, not just drafting. There has been
work presented at ACADIA and other conferences related to arti-
ficial intelligence, data bases, shape grammars, among others.
In all of these cases, existence of a computer language in one
form or another is implied.

The purpose of this paper is to argue that the progress in the
development of intelligent design systems (IDS) is closely linked to
the progress of the languages used to implement such systems. In
order to make the argument, we will adopt an approach of first
specifying the characteristics of an IDS in terms of a conceptual
framework of computer languages in a CAD system in general,
and what it means to develop a machine-understandable lan-
guage for architectural CAD in particular. The framework is useful
for classifying research projects and for structuring a research
agenda in architectural CAD.

acadia’98
Association for Computer-Aided Design in Architecture

304

introduction
For CAD systems to be more useful in the pro-

cess of architectural design than they are now, it
has been argued that it is necessary to augment
their capability of representing and manipulating
information about the design process and built form.
Up to now, CAD systems have been very effective
in automating drafting activities and have changed
the way in which architects and engineers carry
out their work. It is safe to say that even though this
is an impressive achievement, there is still a big
difference between drafting and designing, as well
as the strategies for developing software for each.

Therefore, the question becomes: assuming
that an intelligent design system (IDS) is the object
of research in order to improve the quality of archi-
tectural design, what will the strategy for develop-
ing such as system look like? How do we know if
we are making progress?

The purpose of this paper is to argue that
progess in IDS is closely linked to the progress of
the languages used to implement such systems.
Historically, when there was a great advances in
languages, there were great advances in IDS’s.
However, in the last 10 to 15 years, there have
been no great advance in languages to write intel-
ligent systems in comparison to the advance
achieved between assemblers (non higher level
languages) and the first high level languages, such
as Lisp. This is in spite of a major transformation
since 1988 of functional languages, such as Lisp,
C, and the like, to object oriented languages, such
as SMALLTALK, C/C++, ADA, and Java. What
has happened is that computer systems, including
CAD products, have become increasingly larger
and complex, but not smarter.

In order to make the argument, we will adopt
an approach of first specifying what an IDS should
be. For each aspect of the IDS, we will identify the
type of language needed for its implementation.
The classification of the languages will be done
according to the CAD Language Framework (CLF).
This is done by means of a quick survey of the
history of computer languages. By comparing what
the languages should be like in the CLF and the
ones that exist today, we can have some idea
where CAD systems stand today, and how difficult

it will be to close the gap between what exists and
what is desired.

The thesis that the advance of IDS systems are
directly linked to the development of languages is
the result of the experience gained from designing
the TM language and three of its compilers. For
those who are aware of the history of computer
languages, it comes as no surprise that language
development can require an effort of about 10 years
in order to understand the grammar of the language
as well as its compiler implementation.

the TM language project
The original motivations for developing TM

were to provide a language that would facilitate
the implementation of “intelligent” architectural
design systems as specified in Gerzso (1979). A
more complete description of the basic technical
characteristics of TM and its relation to data bases
can be found in Gerzso (1985). The motivations
were to provide a language that would:

1. have extensibility which would permit a pro-
grammer to define the required objects which
include architectural, graphic, logical, design
restrictions as well as any other entities. That
is, eliminate the dependency on a predefined
and restricted set of data types built into the
language.

2. be interactive and be a unified language in-
terface with an entire standard computer sys-
tem.

In the beginning, TM began as an alternative
to SMALLTALK-80 at a time when this language
was not available. But as TM evolved during the
last five years, several features different from those
of SMALLTALK-80 became apparent and worth
pursuing.

The first feature had to do with the definition
of the objects. In contrast to SMALLTALK-80, TM
has as a basic construct called an administrator,
which itself is an object and which is responsible
for data or pasive objects. Thus, the code is not
wrapped up or “encapsulated” with the data ob-
ject itself, but separate and only associated with it.
The association of code to data objects is the way

305

Speculations on a Machine-Understandable
CAD Language for Architecture

in which encapsulation is done in this language.
The concept of the administrator eliminates the need
for metaclasses and considers code as a separate
object and member of its own class. To those al-
ready familiar with object based systems, the idea
of an administrator may appear strange, but in
reality, it is merely a variation of the traditional idea
of code separated from data.

Closely related to the way objects are con-
ceived is the incorporation of data (object) typing
(classing) in TM. However, in contrast to PASCAL,
typing is strongly recommended but not required.
TM allows that objects be classed as “anything”,
but the burden is on the programmer to make sure
that no undesirable effects occur during execution.
Typing provides the compiler with information con-
cerning the existence of an administrator which is
required for carrying out a response to a message.
If the administrator does not exist or if the message
is incorrect or non existent, the compiler will warn
the programmer. The idea is that many bugs should
be detected at compile time, thus reducing the
debugging at run time.

The next feature which was greatly influenced
by ADA is the explicit separation between public
or outside perception of a function and its imple-
mentation. Thus the design of TM requires that the
compiler support the specification of the definition
of the messages that an object (administrator) can
receive and answer. The specification can be
coded and compiled independently of the imple-
mentation of the responses to the messages. Upon
the compilation of the response or method, the
compiler verifies if the message protocol is satis-
fied and if all of the message expressions in the
method satisfy the specifications previously com-
piled. In contrast to traditional compilers, TM main-
tains files where all of the specifications of the ob-
jects and linking information required at the time
that an administrator is loaded. Other than that,
the message passing mechanisms are almost iden-
tical to those in SMALLTALK-80.

Upon studying the implementations of
SMALLTALK-80 (Krasner 1983), it was concluded
that the idea of searching for methods in hierachical
inheritance structure during run time is too costly
despite its possible programming convenience. In

contrast, TM does the method or message response
searching during compile time if it is possible to
determine the receptor object of the message be-
ing sent. It is felt that because of the data typing
(classing) feature of the language, the compiler has
useful information as to the class of the receptor in
many situations. The advantage of such informa-
tion is to increase the execution of the compiled
code. In addition, compile time method searching
also makes feasible non hierachical inheritance.
This is also closely related to the idea of the com-
piler checking the message specifications, which
has already been mentioned.

All of these features have been incorporated
in the various designs and implementations of TM.
The design is now in its fifth version (Gerzso 1987).
The compiler is now being reimplemented for the
third time (Calderon 1992). The virtual machine
with its corresponding memory management was
completed and running on a VAX-730. It is the
second version (Cardenas 1986). A version of the
compiler and virtual machine was installed on a
Sun workstation and later PC’s under DOS
(Calderon 1992) and Windows NT.

an intelligent design system for architecture
If we are to attempt to come to grips with

what we mean by a CLF, it is necessary to under-
stand first how such a language framework fits in
an overall IDS system. In order to achieve this, it
is useful to imagine what the functional characteris-
tics of such a system. And since such a system
does not exist yet, it is necessary to rely on what
we know about present day technology, even
though it is evident that such will be surpassed in
some aspects in the future.

A CLF by itself does not provide us with an
intelligent design system. In the best of cases, it
provides us with a means of communicating de-
sign ideas to a machine. Therefore, the first gen-
eral function of a language is a human interface.
But once this communication has taken place, the
machine must be able to do something with the
ideas. This gives the second general function of a
language, which is the implementation of the de-
sign system. Thus, the first function, we need an
INTERFACE language; for the second function, we
need an IMPLEMENTATION language. It is not

acadia’98
Association for Computer-Aided Design in Architecture

306

necesary for digitizing, storing, retrieving, display-
ing sketches or drawings in 2 or 3D with all of the
capabilities that exist on the market today (hidden
surface, color, shading, transparency, reflection,
dynamic rotation etc).

Natural language module would take care of
parsing a sentence, establishing its meaning and
translating it into some internal representation or
language. The internal representation may reside
in a general knowledge representation system or
even in a knowledge data base. It would also
perform the inverse process by taking the output of
some process and generating the sentence. It frees
the architect from having to learn a specialized
computer or command language.

However, if the natural language module were
to be bypassed, then it is possible to communicate
with the system through an application specific
computer. Such a language may be subset of the
CLF.

Up to this point, all of the modules are for
graphic or language communication with designer.
The rest of the system is what carries out the “intel-
ligent” processing that is specific to architecture.

The first one of these subsystems are the data
structures and programs which contain the design
rules and methods. It is an embodiment of an ar-
chitectural design expert, and it possesses the knowl-
edge required for designing. It is not only a record
or data base of previous solutions or cases, but
also has the capability of storing what a designer
specifies of what ought to be done, that is, an
issue-based system (Knapp 1996). It should pre-
suppose the existence of a theory of built form
generation which is computable.

Closely related to the above system is another
system which can represent knowledge about built
form. It has data structures or procedures which
describe aspects of spaces, doors, windows, etc.
and all of the necessary descriptions of the at-
tributes of these objects (Khemlani 1997).

The design rules and procedures along with
the knowledge representation systems are built on
top of a general purpose knowledge representa-

obvious if the two languages should be the same.

The imaginary intelligent design system is is
divided into two versions: a full blown version with
all of the desired features or capabilities, and a
basic version which has only the bare essentials.
Both of these versions presuppose technologies
which have only been partially developed, if at
all. Other technologies have been commercialized
for several years. The structure of the system is
organized “from the outside in”. That is, those
subsystems that the designer comes into contact
with appear first (human interface programs) and
the support systems appear later. For each sub-
system, we identify the language that is usually used
for either implementation or for the human inter-
face. Later, we attempt to see how these languages
are related to the CLF. The list of the following
subsystems for the full blown system are:

• sketch and drawing recognition (graphics lan-
guage, picture grammars)

• voice recognition and speech synthesis
• interactive graphics (3D with everything)

(graphical language)
• natural language
• implementation programming languages (Lisp,

C, C++, Pascal, Java, TM and others)
• architectural design procedures and rules (pro-

duction rules)
• building form knowledge representation
• general knowledge representation
• theorem proving (logical language, Prolog)
• relational and/or object oriented data base

(query language: SQL)
• operating system (command language or GUI)
• highly parallel non-von Neumann architecture

(processor hardware). (machine language)

A sketch and/or drawing recognition module
would permit an architect to communicate with a
machine graphically, in the same “language” that
the architect uses in his daily work (Do 1995; Herot
1976; Negroponte 1973). In order to avoid typ-
ing in information or pointing to a menu on a tab-
let or with a mouse, a voice recognition system
would permit the designer to have a dialog with
the machine at the same time he or she is sketch-
ing or drawing. The interactive graphic system
would provide all of the graphic capabilities

307

Speculations on a Machine-Understandable
CAD Language for Architecture

tion system. It may be necessary to have such a
module because knowledge for other systems such
as sketch, drawing and natural language recogni-
tion and synthesis need to have general attributes
about the world which can also be stored and
available.

Much like the need for general knowledge
representation is the need for a logic engine. Such
a capability supports the human language inter-
faces but also systems that are directly related to
architecture. A common problem in this area is to
decide if a given design alternative that is being
generated satisfies a series of restrictions on the
use, position, dimension and geometry of spaces.
In many cases, these restrictions can best be repre-
sented in some logical form and used in conjunc-
tion with a theorem prover. Theorem proving is also
related to the deontic aspects of a project. That is,
statements or rules on what “ought to be”, how
these rules are processed. Therefore, a logic en-
gine for our design system probably is one that is
different from the type of system of PROLOG.

The rest of the system is comprised of modules
that are system software that support all of the
above. They are required in order to keep track of
information in memory or in secondary storage
(data base) and to administrate the hardware (op-
erating system). Finally, there is the hardware it-
self. Conceptually, there is nothing new about the
idea of a data base, operating system and hard-
ware The latter has yet to arrive at a level of stan-
dardization within the industry but is evolving very
rapidly.

In case we want to reduce the scope of the
system to a more basic one, what subsystems would
be essential if the system were to be considered
“intelligent”?

• interactive graphics (3D with rendering and
texturizing)

• programming languages
• architectural design procedures and rules
• building form knowledge representation
• theorem proving
• object oriented or relational data base
• operating system
• von Neumann processor (computer such as a

PowerPC or Pentium).

There is no doubt that the organization of a
design system as described above may be viewed
as incomplete, too general, or even erroneously
structured. This is subject to debate and further
speculation, but the general outline of the system
is valid because it is based on experience in de-
sign methods, computer design and artificial intel-
ligence. To those familiar with AI, this system looks
very similar to a 5th generation machine
(Feigenbaum 1983). It is very ambitious, and it
not clear if can be implemented in the next 10 to
20 years.

CAD language frameworks
Whether a full blown or reduced system is

contemplated, the important thing to remember is
the fact that, in several places in the intelligent
design system, many subsystems have some rela-
tion to languages. Therefore, in attempting to pin
down what is meant by a CLF, it is appropriate to
take each one of these language subsystems and
clarify their characteristics with respect to the over-
all system. We will see that each one is different,
but at the same time, we can speculate that they
may constitute a definition of CLF by taking them
together. To do this, we classify each language
system according to the following categories:

“H” human interface languages;
“A” application, knowledge and logic modules,

implementation languages;
“S” system implementation or operator interface

languages;

“H” category languages are those which are
similar to natural languages. They must be able to
deal with some ambiguity like natural languages,
but they must also have the capability of being
precise like implementation languages. Technologi-
cally, this kind of language has yet to be devel-
oped. Advances have been made in natural lan-
guage recognition, but they still fall short of what
is required here.

“A” category languages encompasses the
application specific modules and their corresponding
implementation languages of which many well
known third or fourth -generation languages

acadia’98
Association for Computer-Aided Design in Architecture

308

exemplify. “S” category languages correspond to
those that are for implementing systems software
or function as command languages in operating
systems.

human interface languages
The first modules that contains an “H” type

language are those related to pictures or architec-
tural sketches and drawings. These appear in two
forms: the first one is a metaphor which views ar-
chitectural drawings as a graphical language as
proposed by David (1972). The idea is that archi-
tects don’t speak in a natural language (words,
sentences and so forth) but primarily via diagrams
or drawings. Another well known example of this
approach is the pattern language work by
Alexander (1977). Such approach has never had
a very marked effect on the architectural profes-
sion or on the implementation of computer systems.
But in design methods, it has been an important
influence on a way of thinking about design. In
contrast, one approach which has been more prag-
matic and related to architectural practice and
which has some influence from the pattern language
work is the SAR design methods by Habraken and
his group (Habraken 1976). However, none of
these approaches has developed formalizations on
an abstract level as is usual in computer science.

The second form in which the idea of language
in design appears is that drawings they can be
represented in terms of a grammar which gener-
ates sentences that are mapped onto drawings as
done by Shaw (1970). In this case, the purpose of
the picture grammars has been for pattern recogni-
tion or vision in robotics. Because of fact that this is
so, it can be argued that it gives some intelligence
to the machine in that it must establish what the
machine is seeing. But despite the emphasis on
pictures, the researchers, such as K. S. Fu and oth-
ers, in syntactic pattern recognition have never been
concerned with architectural design systems (Fu
1974; Gonzalez 1978). It is only those such as
the present author, Mitchell, and Stiny in design
methods who have been aware of the possible
relation (Gerzso 1979; Mitchell 1979, 1990;
Stiny 1979).

However, there are other approaches like the
one developed by Guzmán which can character-

ized as the non-syntactic approach in pattern rec-
ognition (Guzman 1968). This approach has influ-
enced work of Negroponte, Herot and Taggart, in
architecture as applied to sketch recognition (Herot
1976; Taggert 1975; Negroponte 1973). This
work was later continued by Y. Do and M. Gross
(1995).

In an effort to make application programming
languages -as described in the next section- move
to a higher level and closer to natural languages,
Hewitt, Sussman, and Winograd among others
proposed so-called planner languages. The ob-
jective was to go beyond LISP and its variants by
incorporating the capability of reasoning (logic)
and of constructing step by step plans to attain a
specified goal, such as stacking a series of boxes
in a corner of a room (McCarthy 1966; Steele
190; Hewitt 1971). But they failed, and one of
the important reasons was that there was no effi-
cacious way to deal with common knowledge and
understanding of the world. However, one lan-
guage succeeded in merging logic with program-
ming, and that is PROLOG (Kowalski 1977).

The natural language procesors constitute
another “H” category language, for recognition
and answer synthesis, which is is an area that has
received much attention in AI (Barr 1981). Not
only that, there is product which has used the re-
sults of natural language interface for commercial
applications called INTELLECT (Martin 1986). The
objective is to eventually provide an interface to
permit a “normal” conversation to take place be-
tween a person and a machine. The initial and
much of the current effort has been to attack this
problem on a general level regardless of the appli-
cation. The success of this type of program has
been limited, mostly due to the problem of seman-
tics and how to represent knowledge of the every
day world.

application implementation languages
The first examples of an “A” category language

reside in interactive computer graphics systems.
These contain two types of language systems:
command languages and implementation lan-
guages. The first group depends on the graphics
package implementation and there are no well
established standards in this area. The second

309

Speculations on a Machine-Understandable
CAD Language for Architecture

group of languages mostly entail the modification
of a standard computer programming language to
include data types such as points, lines, surfaces
and the like (Foley 1982; Newman 1969). The
issue here is what is the best computer language
for this application. Many designs and implemen-
tations have been carried out in the beginning with
Fortran and now C/C++. In most of these cases,
the motivation of the researchers and developers
of these languages rarely has to do with providing
a system specifically for architectural design. Most
of the effort has been in CAD in engineering, flight
simulation, physics, chemistry, advertising, business
graphics, geology, cartography, special effects for
movies, etc. The field grew very rapidly from 1975
onwards and has celebrated the creation of im-
ages that look as realistic as possible and process-
ing efficiency. In this context, graphic languages
have been very successful, culminating in full length
feature animated cartoon such as Toy Story.

Programming languages, such as LISP, FOR-
TRAN, C; and ADA, have been developed prima-
rily for applications in science, business, and engi-
neering. An exception is Glide developed by
Eastman (Eastman 1979) which was conceived
specifically for architectural applications. The great
majority of these languages have very little to do
with solving the problem of making a machine
understand architectural design issues (Sammet
1969; Wexelblat 1981).

Since 1988, in the area of CAD, the two
most prevalent languages for application develop-
ment are C -and later C++- and a variant of LISP
called AutoLisp (Autodesk 1997; Bentley 1995).
Again, these languages do not have as an objec-
tive to make a machine understand architectural
design issues, but rather implement quantification
procedures for architectural and engineering ap-
plications.

Since 1975, in the area of computer science,
there have emerged one or more (depending upon
one’s definition) so called object based computer
languages. The most well known ones are Smalltalk-
80 -first conceived by Kay (Goldberg 1983) and
Ada (Haberman 1976). It can be argued that they
represent the “state of the art” of the most widely
distributed object based languages. Many other

lesser known object oriented languages have been
in development over the last 10 years, such as
Oberon (Wirth 1992) or TM (Gerzso 1985,
1987). Even though they have been extensively
researched and developed, it is not clear which
ones will ultimately survive. The emergence of these
languages from research facilities to the general
community of computer data processing has made
the idea of object based systems very fashionable
and the subject of many papers.

To those who may have only recently become
aware of object based languages, it may strike
them that such systems have been developed fairly
recently (circa 1990). The actual historical facts
are otherwise. Object based systems and also
closely related concepts of data abstraction can
be traced back to SIMULA reported in 1958. First
versions of Smalltalk and CLU by Liskov date from
the early ‘70’s. (Krasner 1983; Liskov 1981). In
the case of Simula, the developers attempted to
understand the notion of data types, how they can
be defined and what are the characteristics of their
operations. Subsquent language designs addressed
this problem in its own way and each one has
contributed concepts to the field. And yet, to date,
there is no complete consensus as to what these
languages should be like (Wegner 1986), even
though C++ (Deitel 1994) is the one that domi-
nates the industry at this time.

The next module that corresponds to the logic
engine may or may not have a language. In many
systems, Lisp is used as a logical language. This is
achieved by its extensibility feature. However, since
the introduction of PROLOG, logical clauses have
been shown to function as a kind of programming
language (Kowalski 1977). The idea is that the
programmer states the results or goal he or she
wants to achieve and the language attempts to
achieve the results. This contrasts with the usual
approach to programming in which the program-
mer must work out how the program will achieve
the desired results. Despite the fact that PROLOG
is most interesting, it has yet to displace Lisp as
the workhorse language in AI.

Most of the effort in developing logic engines
including PROLOG has been directed at solving
the mechanization of logical reasoning. The im-

acadia’98
Association for Computer-Aided Design in Architecture

310

portant feature of this language is that the system
determines that something is either true or false
based on a set of assumptions and rules of infer-
ence. These two groups of statements make up the
program. There has been little work done relating
such mechanization to architectural design. As for
so called deontic logic machines, at least in de-
sign methods, little has been done to mechanize
this kind of reasoning.

The last but not least important application type
language are those related -or part of- data bases.
They are usually referred to as data definition and
query languages. The most prevalent one is SQL
which as first developed by IBM and has since
then become the industry standard in relational data
bases. The programmer states the conditions that
the information to be retrieved should meet, and
the data base attempts to find that information
(Feuerstein 1995).

system programming languages
The languages used for “S” type projects are

usually asssembler and C/C++. The programs
implemented in these languages have to do with
the inner workings of operating systems such as
UNIX or Windows 3.X or NT. All CAD systems,
including the hypothetical CLF presuppose the ex-
istence of “S” systems, and any CAD intelligence
must developed in addition to them.

shape grammars and DPR’s
In the architectural CAD area, there has been

many publications on shape grammars (SG) and
its relation to languages (Mitchell 1990). But in
the context of the CLF discussion, shape grammars
are not languages in the same sense as a natural
language or programming language. Their linguistic
origin is a result of two historical developments: on
the one hand, there is the metaphor of architecture
as language, and on the other, the application of
techniques derived from grammars evolved from
the work first done by Noam Chomsky in linguis-
tics (Chomsky 1956). The formalization of gram-
mars is based in part on the idea of production
rules, which is a way of modelling languages.

Shape grammars are variations on the use of
production rules as applied to architecture, devel-
oped by Mitchell and Stiny. In this case, the idea

of modelling combinatorial rules of architectural
styles is a way of representing design knowledge.

However, a conceptual confusion begins at
the time production rules or grammars are applied
to pictures and architecture. As long as pictures
are mapped onto strings that belong to a language
(such as done in PDL by Shaw), the production
rules representing the language can still be thought
of as a grammar. But when pictures and architec-
ture are no longer mapped onto strings, then the
set of production rules can no longer be conceived
as a grammar, for neither pictures nor buildings
are examples of sentences in a language. For this
reason, the present author has proposed (Gerzso
1979, 1985) production rules in the form of dia-
grams called Diagrammatic Production Rules
(DPR’s), which represent spatial combinatorial rules
that are valid in a given architectural style. They
represent aspects of architecture and not languages.
Thus, the terminology is architectural. For example,
instead of saying that the set of production rules is
a grammar, we say that they are an order, as in
architectural (Greek) orders. These orders were a
kind of intuitive rules of design in a given style.
Instead of saying that a design of a building is a
sentence, we say that it is a variant, which is an
idea proposed by Habraken (1976). Instead of
saying that a space is a word, we call it a spatial
primitive. And finally, instead of calling a group of
spaces, which are part of a design, a phrase, we
call it a configuration.

SG’s and DPR’s have a common goal in at-
tempting to account for the generation of specific
architectural solutions within a given style. Because
both of them provide (at least in principle) unam-
biguous mechanisms for generating architectural
solutions, it then follows that they can be imple-
mented in a machine. However, SG’s and DPR’s
are not very smart in comparison to a real designer,
but they are smarter than improvising rules while
hacking computer code.

The motivation for considering DPR’s and SG’s
as knowledge representation is to emphasize the
importance of these endeavors. In fact, they are
the most important part of an intelligent design sys-
tem because without it, the rest of the system, such
as a CLF, would have little reason for being. Ex-

311

Speculations on a Machine-Understandable
CAD Language for Architecture

cluding DPR’s or SG’s or some equivalent method
would be analogous to attempting to train an ar-
chitectural designer, but failing to provide the ex-
pertise in the process. This is well understood in AI
where it is generally recognized that to develop
an expert system, basic problems to overcome
are:

• Finding ways to make explicit the knowledge
of a given field so that it can be representedin
a program. If the field or profession does not
have the tradition of making its knowledge
explicit, then the effort of programming an
expert system may yield poor results.

• Finding an expert who has the ability to or-
ganize and present knowledge explicitly to
the developers of the expert system.

• Finding computer specialists who can supply
additional techniques (called opaque knowl-
edge) which permit representing and using
explicit knowledge in a machine (Barr 1981).

the computer language framework
Given existing technology, the purpose of the

discussion up to now has been to identify those
places in an intelligent design system which require
the use of a language system, in one form or an-
other. It has served as a frame of reference for
what is to be dealt with next.

As we analyzed the characteristics of the vari-
ous languages as a group in terms of existing tech-
nology, one aspect stands out above all others:
there is a special language for each module. Each
one is usually not compatible with any of the oth-
ers. For example, the graphics language may be
different than the implementation language, which
in turn is different from the query language, the
logical language, the operating system command
language and so on.

Historically, there have been two approaches
to developing languages and systems. The first one
assumes that one language should be adequate
for all software projects. The most famous examples
have been PL/1 and ADA. This can be called the
vertical approach to system implementation. The
second one assumes that there is a language for
each application area or type. For example, for
AI, LISP is used, for data bases, SQL is used, for

Windows applications, C/C++ is used, and son
on. This one can be called the horizontal approach.

According to the first strategy, one language
should be developed in order to satisfy the entire
CLF. That is, it should be adequate for each of the
three language categories “H”, “A” and “S”. There-
fore, the goal would be to eliminate the various
languages and substitute for them one language.
This one language would function as an end user
language and a programming language. An ex-
ception may be in the use of a language for imple-
menting a particular module, such as a data base
or operating system.

In order to clarify the nature of an integrated
language system, it is useful to spell out some of its
important characteristics. That is, the language
must be:

• similar to a natural language with its corre-
sponding knowledge representation mecha-
nisms;

• able to represent objects in 3D space;
• function as a programming language;
• integrated with a logic and/or constraint en-

gine;
• integrated with data bases which contain the

semantics of architectural built form and knowl-
edge about the world in general.

It is recognized that to achieve many of the
specifications listed above, major efforts in lan-
guage research may be required. For example, it
is not clear how to design and implement a lan-
guage system which on the one hand is similar to
a natural language, but at the same time functions
as a programming language and contains a data
base and a logic engine. Some features have been
achieved in INTELLECT, a fourth-generation lan-
guage which is integrated with a data base (Mar-
tin 1986). Smalltalk-80 has succeeded only in in-
tegrating an implementation language with an in-
teractive graphic interface. And in general, history
has not been kind to those languages that have
tried to satisfy all of the programming requirements.

The second strategy requires a standardiza-
tion of the way in which CAD sub systems commu-
nicate with each other. This is known as the system

acadia’98
Association for Computer-Aided Design in Architecture

312

integration problem. This would require that an IDS
system be developed using several different lan-
guages. Even though this appears to be messier
than the first strategy, it has proved to be the strat-
egy most used, at least in the “A” type AI systems
used in industry.

conclusion
In relation to the “H” part of the IDS system,

there is still much to be developed in the commer-
cial CAD systems. Functionality such as complete
sketch or drawing recognition is still not a reality,
although some systems can perform some raster to
vector conversion. Natural language recognition
for architectural applications, whether typed or
spoken, is even farther away into the future than
drawing recognition.

Languages for “H” systems advanced rapidly
from assembler to LISP in the early 1960’s, but
have not advanced at the same rate in the last 20
years. These were termed high level languges; the
“high level” part was in relation to the assemblers.
However, the next generation of even higher level
languages have not materialized, even though
much effort was invested in systems like PLANNER
and CONNIVER. So, it is safe to assume that CAD
systems will not help designers do a better job by
means of intelligent human interaction software at
least in the next 10 years.

As we have seen, for “A” type systems, lan-
guages are important and indispensible compo-
nents of any computer system, whether it be for
communication with a user or for programming. In
general, the development of a computer language
is the result of attempting to facilitate the interac-
tion with a machine or its programming for particu-
lar kinds of applications. As a consequence, there
exists a situation which is akin to the Tower of Ba-
bel in many computer systems. This has been toler-
ated up until now because of this diversity of appli-
cations and the investment in existing systems which
cannot be easily discarded. But, it has been found
that typical high level languages such as FORTRAN,
PL/1, COBOL, C/C++, Lisp, PROLOG, ADA, Java
and the like are not satisfactory for a system that
requires a machine-understandable design lan-
guage (CLF) because of the following:

• The syntax and semantics require special train-
ing to use and understand–that is, they are
very arcane compared to natural languages.

• The expressive power of the languages is ex-
tremely limited. A language with the “seman-
tic richness” closer to that of a natural lan-
guage is what is required.

• Some are not extensible–that is, the program-
mer must accept the given data types of the
language.

• They are usually not integrated with a data
base, graphics system or logic engine.

• They usually require that the programmer deal
with routines to maintain information in memory
and on secondary storage.

In conclusion, the improvement in the quality
of architectural design in the near future will not be
result of intelligent design systems. As has been
argued, the prime reason for this is the lack of a
dramatic advance in programming and human in-
terface languages that are closer to the semantic
and expressive power of natural languages. The
thesis is that CAD software development is closely
tied to language development, and as we have
seen, most of the development has been in “A”
type languages.

How will this affect research in architectural
CAD? Assuming that the thesis is correct, research
agendas should concentrate on using technology
of the “A” type, and only embark on projects ad-
dressing “H” type issues with the understanding
that it may take decades to complete.

313

Speculations on a Machine-Understandable
CAD Language for Architecture

references

Alexander, C., et. al., 1977. A Pattern Language.
New York, NY: Oxford University Press.

Autodesk Inc., 1997, AutoCAD R14 Customization
Guide, California.

Barr, A., E. A. Feigenbaum, 1981. The Handbook
of Artificial Intelligence, Vol. I-III. Los Altos, CA:
W. Kaufmann.

Bentley Systems, 1995, MDL Programmer’s Guide.
Exton, PA.

David, R. E., 1972. ”Proposal for Diagramatic
Language for Design,” Visible Language, VIc/
o The Cleveland Museum of Art, Cleveland,
Ohio.

Do, E. Y., and M. D. Gross, 1995. “Drawing
Analogies: Finding Visual References by
Sketching,” in Proceedings, ACADIA’95, Se-
attle, WA.

Calderon, M., 1992. Un Compilador Para TM,
Un Lenguaje de Programación Orientado a
Objectos, Undergraduate Thesis in Computer
Science, Fundación A. Rosenblueth, Mexico
D. F., Mexico.

Cardenas, S., 1986. Una Máquina Virtual para
TM, Master’s Thesis in Computer Science,
National Autonomous University of Mexico
(UNAM), Mexico D.F., Mexico.

Chomsky, N., 1956. “Three Models for the De-
scription of Language,” I.R.E. Transactions of
Information Theory IT2.

Deitel, H. M., and P.J. Deitel, 1994. C++ How to
Program. Englewood Cliffs, NJ: Prentice Hall.

Eastman, C. M., and M. Henrion, 1979. “GLIDE:
A System for Implementing Design Databases,”
Proceedings of (Planning, Architecture and the
Computer) PArC 79, Berlin, West Germany.

Feigenbaum, E. A., and P. McCorduck, 1983.
The Fifth Generation, Aritificial Intelligence and
Japan´s Computer Challenge to the World.
Reading, MA: Addison-Wesley.

Feuerstein, S., 1995. Oracle PL/SQL Program-
ming. Sebastopol, CA: O’Reilly &Assoc.

Foley, J. D., and A. Van Dam, 1982. Fundamen-
tals of Interactive Computer Graphics. Read-
ing, MA: Addison-Wesley.

Fu, K. S., 1974. Syntactic Methods in Pattern Rec-
ognition. New York, NY: Academic Press.

Gerzso, J. M., 1979 A Descriptive Theory of Ar-
chitectural Built Form and its Applications,

Ph.D. Dissertation, University Microfilms.
Gerzso, J. M., 1979. “Spacemaker, A Computer

Language for Modelling Architectural Physi-
cal Form,” Proceedings of (Planning, Archi-
tecture and the Computer) PArC 79, Berlin,
West Germany.

Gerzso, J. M., and A.P. Buchmann, 1985. “TM-
An Object-Oriented Language for CAD and
Required Database Capabilities,” Languages
For Automation, Chang, Shi-Kou (ed). New
York, NY: Plenum Press.

Gerzso, J. M., 1987. Report on the TM Language
Design, Version 5, Internal Working Document
at the Institute for Research in Applied Math-
ematics and Systems (IIMAS), National Au-
tonomous University of Mexico (UNAM),
Mexico, D.F., Mexico.

Gonzalez, R. C., and M. C. Thomason, 1978.
Syntactic Pattern Recognition, An Introduction
Reading, MA: Addison-Wesley.

Guzman, A., 1968, Computer Recognition of
Three-Dimensional Objects in a Visual Scene,
Technical Report 228, AI Lab, MIT, Cam-
bridge, Massachusetts.. See also section of
pattern recognition in The Artificial Intelligence
Handbook, Vol. III, A. Barr, et. al., (ed).

Goldberg, A., and Robson, D., 1983. SMALLTALK-
80, The Language and Its Implementation.
Reading, MA: Addison-Wesley.

Haberman, N., and P. E. DeWayne, 1976, ADA
for Experienced Programmers. Reading, MA:
Addison-Wesley.

Habraken,J., et. al., 1976. Variations, The Sys-
tematic Design of Supports, Laboratory of Ar-
chitecture and Planning, MIT, Cambridge,
MA.

Herot, C., 1976, “Graphical Input Through Ma-
chine Recognition of Sketches.” Computer
Graphics, SIGGRAPH Quarterly Report, Vol.
10, No. 2.

Hewitt, C., 1971. The Description and Theoretic
Analysis (using schemas) of PLANNER: A Lan-
guage for Proving Theorems and Manipulat-
ing Models in a Robot, Ph.D. Thesis, MIT.

Hewitt, C., 1975. A PLASMA Primer, AI Lab Work-
ing Paper 92, MIT, Cambridge, MA.

Hopcroft, J. E., and J. D. Ullman, 1969. Formal
Languages and Their Relation to Automata.
Reading, MA: Addison Wesley.

Khemlani, L., and A. Timerman, B. Benne, Y. E.

acadia’98
Association for Computer-Aided Design in Architecture

314

Kalay, 1997. “Semantically Rich Building
Representation,” in Proceedings, ACADIA’97,
Cincinnati, OH.

Knapp, R. W., and R. McCall, 1996. “PHIDIAS II-
In Support of Collaborative Design”, Proceed-
ings of Acadia 96, Tucson, Arizona.

Kowalski, R., 1977. Predicate Logic as a Program-
ming Language. North Holland, Amsterdam.

Krasner, G. (ed), 1983. SMALLTALK-80, Bits of
History, Words of Advice, Reading, MA:
Addison Wesley.

Liskov, B. H., et. al., 1981. CLU Reference Manual,
Lecture Notes in Computer Science. New
York, NY: Springer-Verlag.

Martin, J., 1986. Fourth-Generation Languages,
Vol. I. Englewood Cliffs, NJ: Prentice-Hall.

McCarthy, J., et. al., 1966. LISP 1.5 Programming
Manual. Cambridge, MA: MIT Press.

Mitchell, W. J., 1990 The Logic of Architecture.
Cambridge, MA: MIT Press.

Mitchell, W. J., 1979. “Synthesis with Style,” Pro-
ceedings of (Planning, Architecture and the
Computer) PArC 79, Berlin, West Germany.

Negroponte, N., 1973. “Recent Advances in
Sketch Recognition,” Proceedings of the Na-
tional Computer Conference (NCC), New
York, NY.

Newman, W. M., and R. F. Sproull, 1969 Prin-
ciples of Interactive Computer Graphics. New
York, NY: McGraw-Hill.

Sammet, J. E., 1969. Programming Languages:
History and Fundamentals. Englewood Cliffs,
NJ: Prentice-Hall.

Shaw, A. C., 1970, “Parsing of Graph-Represent-
able Pictures,” Journal of the ACM, Vol. 17,
No. 2.

Steele Jr., G. L., 1990. Common Lisp. MA: Digi-
tal Press..

Stiny, G., 1979. “A Generative Approach to Com-
position and Style in Architecture,” in Proceed-
ings of (Planning, Architecture and the Com-
puter) PArC 79, Berlin, West Germany.

Sussman, G., 1972. Why Conniving is Better than
Planning, AI Report 255, AI Lab, MIT, Cam-
bridge, Massachusetts. See also section on
AI languages in The Handbook of Artificial
Intelligence, A. Barr (ed), et. al.

Taggert, James, 1975. “Sketching, An Informal
Dialogue Between Designer and Computer,”
Reflections on Computer Aids to Design and

Architecture, N. Negroponte (ed). New York:
Petrocelli/Charter.

Waltz, D. L., 1972. Generating Semantic Descrip-
tions From Drawings of Scenes with Shadows,
Technical Report 271, AI Lab, MIT, Cam-
bridge, Massachusetts. See also section on
pattern recognition in The Handbook of Artifi-
cial Intelligence, A. Barr (ed), et. al.

Wegner, P., 1986. “Classification of Object-Ori-
ented Systems,” SIGPLAN Notices, ACM, Vol.
21, No. 10.

Wexelblat, R. L., 1981. History of Programming
Languages. New York, NY: Academic Press.

Winograd, T., 1981. ”SHRDLU,” The Handbook
of Artificial Intelligence, A. Barr, E.A.
Feigenbaum (eds). Los Altos, CA: William
Kaufmann.

Wirth N. and M. Reiser,. 1992. Programming in
Oberon: Steps Beyond Pascal and Modula-
2.. Reading, MA: Addison Wesley.

315

Speculations on a Machine-Understandable
CAD Language for Architecture

