
PATTERN-BASED GENERATION OF CUSTOMIZED,
FLEXIBLE BUILDING SIMULATORS

JAN PETER RIEGEL, MARTIN SCHÜTZE,
GERHARD ZIMMERMANN
Dep. of Computer Science
University of Kaiserslautern
Germany

This paper describes a domain-specific software development method for the creation of
building simulators. The method is based on object-oriented modeling, design patterns
and code generation principles. The goal is to provide customizable building simulators
that exactly simulate those physical effects an application demands. The numerical accu-
racy and different algorithms to be used can be tailored to the application’s needs. By
using object models and preconfigured design patterns, a well-structured simulator
model can be created. From this model, the complete product code of a simulator is gen-
erated. The patterns help to develop a complete and correct model. Each pattern
describes a certain functionality and knows how to generate code to implement this func-
tionality.

1. Introduction

Simulation for performance evaluation of large buildings and their installation is desir-
able through all phases of the design process. Existing, commercially available building
simulators are in most cases large, monolithic systems which neither can be tailored to
the simulation needs nor are they easy to use. Worse than that, they frequently require a
very detailed description of the building which is not known in early design phases.
Therefore, these simulators are used in later stages of the design where the correction of
possible errors detected by the simulators is difficult and expensive.
Due to this mismatch between the designer’s needs and the simulator’s requirements,
CAAD system developers try to integrate performance evaluation tools into their sys-
tems (e.g., Mahdavi 93). These tools determine important performance indicators during
early design phases, sometimes in a two way approach where modifications of the indi-
cators are reflected in possible design modifications (Flemming and Mahdavi 93).
In contrast to the calculation of performance indicators, we propose a ‘classical’ simula-
tion approach, where buildings are simulated in the time domain. This approach was pri-
marily intended to support building control system engineers with a software test
environment, but can also be used for performance evaluation. We do not provide one
monolithic, comprehensive simulator. Our software engineering approach to the simula-

tion problem consists of a very flexible simulator generator that creates customized sim-
ulators for specific needs and on different levels of abstractions. By this way, the
application (CAAD or a control system engineering environment) can be integrated
together with the simulator in a design tool (compare Milne 91). The underlying object
model of the simulator, as well as the simulated effects, the level of details, and the used
physical abstractions can be determined by the user. The modeling of the simulator is
supported by a design pattern-based mechanism (Gamma et al. 95/ Pree 95), a concept
which originally came from the architectural domain (Alexander, Ishikawa, and Silver-
stein 77) and found its way to software engineering. When the modeling is done, a code-
generator is used to create the product code for an executable simulator.
Chapter 2 describes the simulation principles of our simulators and the different degrees
of freedom they allow. The modeling of such a simulator is described in chapter 3. This
chapter is divided into three parts, each describing one major step of the modeling. These
are: setting up an object model, applying patterns to this model, and transforming a CAD
drawing to get a building instance. The generation process is briefly described in chapter
4. The paper concludes with a list of related works (chapter 5) and a discussion of our
approach in chapter 6.

1.1 CLASSIFICATION

One application domain where flexible simulators are needed is the development of con-
trol systems for buildings. Because it is too expensive and too complicated to test a
building control against a real building, simulation is necessary. Here a simulator must
act as close as possible like a real building. However, only those effects have to be simu-
lated which influence the or are monitored by the control. Depending on the building
control, it might be interesting to test it against a variety of different buildings. The sim-
ulator for such control algorithms has to emulate the same timing behavior as a real
building, thus real time simulation is necessary.
Another domain where building simulation is useful is Computer-Aided Architectural
Design. During the design of a certain building, simulation can be used to verify the per-
formance of construction details. Here, the model of the building is rapidly changing and
a simulator must be adapted to simulate exactly the building under development. Simula-
tion should be possible even if only parts of the building are readily designed. Such a
simulator is naturally less exact as one using the final design might be, but nevertheless it
can be used to detect major design flaws in early phases. By this way, for example, the
performance of a central storage heating can be simulated before the entire construction
of the building has been completed. If the simulation reveals that the required mass of
the heat storage is too big or too small the design can easily be adapted without having to
change the complete building.
There are three different categories of simulation environments.Simulation languages
(e.g. SIMULA, Lamprecht 81) are very universal, but do not provide any help for the
development of a domain specific model. To use a simulation language, detailed knowl-
edge of the language and of the problem domain must be present.Simulation Systems
like GASP (Alan and Pritsker 74) or SMILE1 are focused on the exact modeling of phys-
ical effects. Therefore, they can be used if the physics that should be emulated are well

understood and if useful simulation algorithms are known in advance. Completespecial-
ized simulators (e.g. TAS1) can be used by people which are not experts in the simulation
domain, but tend to be static, monolithic systems that cannot be adapted to the applica-
tion’s needs.
The overall goal of our approach is to provide a powerful, but easy-to-use, method for
creating building simulators. The user of this method doesn’t need to be an expert in the
simulation domain. This way, for example, a tool integrator who knows about the appli-
cation which has to be tested, and is somewhat familiar with software engineering mod-
els but who is not familiar with simulation in detail, can use our method. We try to
abstract from the implementation of a building simulator by providing simple and under-
standable simulation patterns that can be used to model the final simulator.

2. Simulation

The building simulator has to be flexible in several ways:

Different physical effects. It should be possible to choose from a variety of effects
to be simulated. These effects can be isolated or related with other effects (e.g. humidity
is related with temperature). In such a case both effects can be simulated in detail or one
effect is emphasized while (for simplicity) the other is only approximated. It must be
guaranteed that the simultaneous simulation of more effects leads to correct solutions.
This is especially true if discrete effects are mixed with continuous ones.

Different levels of abstraction. Depending on which data are actually available and
depending on how accurate the simulation should be, a simulator can be more general or
can be modeled specific. Therefore, the ‘best’ simulation algorithm depends on the cur-
rent status of the application and on the goal of the simulation (i.e. which effect or behav-
ior should be tested).

Accuracy versus speed. It is a very complex task to simulate physical effects as
exact as possible. A customized simulator should be able to trade speed for accuracy in
order to get nearly exact results in much shorter time. However, a more precise simula-
tion should also be possible.

Real-time. The simulation should take place in real time or accelerated accord-
ing to real time, so that the timing behavior of a building can also be simulated. Further-
more, an asynchronous interaction with the simulator is needed to test control systems.

Hardware-in-the-Loop. It should be possible to integrate real hardware into the
simulator. This restriction comes from the main purpose of our approach, namely to sup-

1. Symbolic InteractiveLotosExecution, LOTOS Tool development group, dept. of Computer
science, University of Twente, PO Box 217, 7500 AE Enschede, The Netherlands

1. TAS (Thermal Analysis Software), Environmental Design Solutions Ltd., 13/14 Cofferidge
Close, Stony Stratford, Milton Keynes, MK11 1BY, Great Britain

port a control engineer with a powerful tool to test complete control systems including
hardware parts. To integrate hardware in the simulator, the simulation must take place in
real-time.

To meet all these needs, an application-specific simulator has to be created. For each
physical effect to be simulated, we provide one or more simulation components. The
interfaces of these simulation components have to be clear and standardized so that sin-
gle components can be exchanged in order to include a new effect or to chose a different
accuracy. Well-defined interfaces also support the process of stepwise refining a simula-
tor. Starting with a rough, imprecise model of the simulator, it could be refined to incor-
porate more precise algorithms if special effects are to be simulated. This refinement can
be hierachical (i.e. starting with an imprecise simulation of a special effect and using
more concrete algorithms in later phases to trade accuracy for speed or to change the
level of abstraction) or explorational (adding new effects).
The final simulator is built from several small fragments, each providing a partial func-
tionality. In order to make these parts fit together, the simulation must take place on a
very local level. Our simulators consist of many different objects which are closely
related to „real world“ objects. These objects are, for example, walls or rooms. Anobject
model describes these objects and their relations. In contrast to other simulation
approaches where the calculation is done on a global level (one big system of differential
equations is solved with every time step), our simulation objects simulate themselves
making the integration of further functionality easy and leaving room for possible local
optimizations. For example, in order to calculate the actual room temperature, a room
object collects all the heat-flows from its neighboring objects (walls, heating installa-
tions, sun radiation, etc.) and uses these values together with the elapsed time interval to
compute the new temperature. The room doesn’t have to know, how the heat flow was
calculated - this is in the responsibility of the wall or heating objects.
The interfaces of the objects and the data they exchange are declared by predefined
design patterns.Patterns describe an abstract functionality that can be adapted to objects
from the object model. Each pattern of our pattern catalog is able to work together with
other patterns enabling to model on different levels of abstraction. This way, one simula-
tion object can easily communicate with other objects. If a variant of an existing simula-
tor is to be created, only few patterns need to be exchanged.
As an example, figure 2 a) describes a very simple situation, where a wall only consists
of one object. The heat flow through such a wall can easily be calculated depending on
the difference of temperatures of both adjoining rooms (q = (∆ν⋅A)/Rλ, with ∆ν/[Κ] =
difference of the temperatures, A/[m2] = area of the wall, Rλ/[m2K/W] = thermal resis-
tance of the wall). In figure 2 b) a wall is more complex. Here, it consists of several lay-
ers (i.e. the wall object has associated layer objects), each with its own thermal resistance
or heat storage capacity. If such a wall is asked about its heat flow, it delegates the ques-
tion to its layers which sum up the total heat flow. In either case, a room object doesn’t
have to know about the wall structure - it just uses the well-defined interface to the wall
object.

3. Modeling the Simulator

The question that now arises is how to specify the simulator without having to deal with
the issues of the last chapter in detail.
A software system can be divided into several views. Thestatic view describes all parts
that do not change while the program runs. Especially data structures belong to the static
view. These can be modeled using object diagrams (Rumbaugh et al. 91) or Entity Rela-
tionship diagrams. There are several methods how to model data structures. Tools are
available to support the modeling and generation of program code out of these models.
Static models can be used as an integration platform for the complete system: in these
models references to other models describing the functionality or the behavior of a cer-
tain object can be stored.
Another aspect of the static view is the instantiation of the object model. That is, the
actual data on which the program operates have to be described. We use object models to
describe static aspects (see figure 2) and transform data from a CAD editor to instantiate
these models, thus building the input to our simulator.
The dynamic view on a software system shows how the program behaves during run
time. To create dynamic models (e.g. State Transition Diagrams), a software-engineer
has to know very much about the problem domain and needs experience in software

Figure 1. Interfaces of a wall object.
a) simple wall
b) layered wall

Room
Kitchen

Surface
Air

LightLayer
Cardboard

HeavyLayer
Concrete

Surface
Air

Room
LivingRoom

ν νν

Rλ Rλ Rλ Rλ

+ /2 ++

CV CV

q q
b)

Room
Kitchen

ν

CV

Wall

Rλ

q

Room
LivingRoom

ν

CV

q
a)

A

A A

design. For simplicity, we “hid” all dynamics in special control patterns and in a simula-
tor kernel library. This library provides methods to control the simulation process and
can be used on the modeling level. Using control patterns, the dynamic behavior of a
simulator can be modeled with abstract descriptions instead of setting up a detailed State
Transition Diagram from scratch.
Finally, the functional view on a software system has to be described. This is normally
the domain of a programmer or software engineer who has to choose the best fitting algo-
rithms and translates them into program code. Because of the limited application
domain, we are able to encapsulate possible algorithms in simulation patterns. A pattern
generator knows how to implement the pattern’s functionality so that the user can con-
centrate on the functionality a pattern provides and doesn’t have to bother about a correct
implementation.
The customization of the simulator takes place on the modeling level. The central model
is an object model describing the building’s topology (see a very simplified example in
figure 2). This model may be adapted by the user to describe the building as exact as

needed. For example, the model can be enriched with additional elements describing
exact geometry or detailed information about installations and control systems. Figure 2
a) is a small model sufficient to represent simple wall structures (compare figure 1 a)).
With a building model like in figure 2 b) more sophisticated simulation approaches as in
figure 1 b) can be modeled. In addition to this building model, there are other models
describing the simulator kernel objects and the simulator’s functionality. To create a spe-
cial-purpose simulator, these different models have to be linked together. As a ‘glue’
between the models we use a derivative of design patterns (Gamma et al. 95).
Figure 3 describes the development of a building simulator (see Altmeyer et al. 97). The
central model is an object model describing the static view on the simulator. Here,

Room Wall

temperature

heatFlow
Room Wall

temperature

heatFlow

Layer

Surface LightLayer HeavyLayer

heatFlow

capacity
resistanceresistanceresistance

a) b)
2 n

2 n

SimpleWall

heatFlow

consists of

is a

uses

Figure 2. Object models for different simulation methods.
a) direct calculation

b) delegation

Name

methods

attributes

object

objects like ‘Room’ or ‘Wall’ are declared. To describe the behavior of these objects, we
use simulation patterns from our pattern catalog. These patterns are ‘bound’ to the object
model by stating how they interact with the objects. A set of generators and transformers
is used to generate code from the resulting model.

Starting with the adaptation of the building model (i.e. an object model describing a
building), design patterns are successively applied to the model in order to get the
needed simulator functionality. The result of this modeling step is a refined building
model which includes patterns and their bindings to the objects from the model. Encap-
sulated in each pattern is a code template so that after the modeling step a complete sim-
ulator can be generated. The class structure of the simulator program is generated by our
software engineering tool MOOSE (Model-basedObject-OrientedSoftware Generation
Environment, see Altmeyer, Schürmann, and Schütze 95), whereas the functionality is
created using the PSiGene generator (Pattern-based Simulator Generator, Schulz 97).
The concrete building instance, which should be simulated, is acquired using a CAD-edi-
tor (Speedikon1) and transforming the drawing into usable program code. In the follow-
ing, the three major parts of the modeling process are explained: adaptation of the static
models, binding of design patterns, and instantiation of the building. The generation pro-
cess is briefly explained in chapter 4.

3.1 OBJECT MODELS

A central point of the simulator model is the structural view of the simulation objects.
Here, the objects are described along with their attributes and relations to other objects.

1. Speedikon X, IEZ AG, Berliner Ring 89, D-64625 Bensheim, Germany

pattern catalog

class x
...

method y
...

init
Room new

classes
access methods

simulation
methods

instantiation
generated code

object model

CAD-drawing

object model with
pattern bindings

MOOSE
generator

PSiGene

building transformation

Figure 3. Simulator development with MOOSE/PSiGene

modeling generation

The notation for this description is a derivative of the OMT class models (see Rumbaugh
et al. 91 and figure 2).
These models can be edited using MOOSE, a software engineering tool we have written.
MOOSE also contains powerful software generators which are capable of generating
complete class structures out of these object models including access functions, methods
to handle connections between objects, and a persistent storage mechanism. These code
generators are available for the programming languages C, C++, and Smalltalk (Visual-
Works). For our building simulator, we use the Smalltalk generator.
The modeling of object models goes hand in hand with the application of patterns to
these models (see below). We provide a basic building reference model (i.e. an object
model describing the static view on a typical building) that can be used as is or can be
taken as a basis for further refinements.

3.2 DESIGN PATTERNS

Design patterns are used in our approach to define the simulator functionality and act as
‘glue’ to define the interactions of objects in the object model. They originally came
from the architectural domain. The architect Christopher Alexander used patterns to
describe what ‘good’ designs are and how to obtain them (Alexander, Ishikawa, and Sil-
verstein 77). Therefore, he created a pattern language in the way that a set of interacting
patterns describes how and why a building is constructed the way it is. He defines pat-
terns as “a three-part rule, which expresses a relation between a certain context, a prob-
lem, and a solution”. The idea of patterns has been transformed to the domain of
Software Engineering (Gamma et al. 95). Here, each pattern describes a recurring soft-
ware problem which should be solved, a context in which this problem occurs, and a
solution to this problem.
In general, software design patterns give clues how certain problems can be solved using
special object structures or algorithms. Design patterns are mainly used to support the
modeling and the documentation of software. They should be applicable in many situa-
tions, therefore, they are on a rather abstract level and not useful for automatic code gen-
eration. In our case, however, we focus on a narrow domain, the domain of building
simulation. Therefore, we were able to create specialized patterns that describe small
parts of a building simulator. These specialized patterns contain code fragments so that
an automatic code generation is possible if such a pattern is used (i.e. bound to an object
model).
Each pattern contains a descriptionwhen it could be used,which problem it solves,how
to apply it,which underlying object structure it expects, andhow a generator should gen-
erate code to solve the problem. A pattern contains only the solution to a small problem.
To solve a complex problem, it often depends on functionality provided by other pat-
terns. For example, to simulate the temperature of a room, the room object needs to
know how to calculate the temperature out of incoming heat flows. A patternThermal-
Mass is responsible for the calculation of the temperature and relies for the calculation of
the heat flows on functionality provided by other patterns. The parts of a pattern which
are defined elsewhere are called ‘hot spots’ (Pree 95) because the pattern itself only
defines the interface making different implementations (by other patterns) possible. Thus

each pattern includes a description of the interaction with other patterns by usingtem-
plate methods which include interface and implementation of a certain functionality and
hook methods which only describe the interface.
Figure 4 shows parts of one of our patterns (ThermalMass) in detail. Every pattern is
structured into several sections to describe the context, the problem, and the solution sep-
arately. ‘Intent’ and ‘Motivation’ describe the addressed problem using a suitable exam-
ple from the application domain. ‘Applicability’, ‘Participants’, and ‘Collaborations’
show the context and define how a pattern can be used. ‘Structure’ and ‘Implementation’
show the solution. The organization of a pattern is the same as in (Gamma et al. 95), but
we have formalized some parts to make code generation possible. The ‘Participants’ part
describes the exact interface of a pattern, i.e., every parameter of the pattern that has to
be bound to the object model. In our example, the pattern needs a binding to a target

Figure 4. Pattern example (abbreviated)

6.1. Pattern ThermalMass

Intent
The ThermalMass pattern computes the temperature
of a mass depending on the amount of heat affecting
the mass. …

Also Known As
Simulation thermischer Masse [1]

Motivation
A volume has to act as a thermal mass to compute its
temperature. …

Applicability
This pattern can be bound to any thermal mass. Typi-
cal this is a room or …

Structure

Participants

Objects
• target

Object to bind pattern to.

Attributes
• temperature

Last computed temperature.
• volume

Volume of the thermal mass.

target

compute
calculate-

temperature
amountOfHeat
volume

calculateTemperature
(heatCapacity,
collectedHeatFlows,
…

Temperature

amountOfHeat := amountOfHeat
+ heatFlows * passedTime.
temperature := amountOfHeat/…

Methods
• compute

Does the calculation cycle for one time.

Interfaces
• getHeatCapacity

Determines the storage capacity from the tempera-
ture of a mass.

• collectHeatFlows
Determines the heat-flows from and to a thermal
mass.

Collaborations
The computation relies on …

Consequences
…

Implementation

Smalltalk-Code-Templates
• {init}

self {amountOfHeat}:= (self{temperature} *
self {volume} * self {getHeatCapacity}).
self {timeOfLastComputation}:

Scheduler simSched simMillisecondClockValue.
• {compute}

| heatCapacity collectedHeatFlows timeNow |
timeNow:= Scheduler simSched simMillisecond-
ClockValue.
heatCapacity := self{getHeatCapacity}.
collectedHeatFlows := self{collectHeatFlows}.
self {calculateTemperature}WithCapacity: heatCa-
pacity

withHeatFlows: collectedHeatFlows while:
((timeNow-self{timeOfLastComputation})/1000).

self {timeOfLastComputation}: timeNow.
…

Related Patterns
Thermal Exchange

class (e.g. room). This object has to have two attributestemperature andvolume. Also a
name for the template methodcompute has to be specified. To calculate a room’s temper-
ature, the heat flow into it has to be known. Because there could be many different heat
sources and different calculations of the heat flows, the methodcollectHeatFlows is only
defined as a hook method. The actual implementation has to be done elsewhere (i.e. with
another pattern bound to the wall or to the heating installation). Last not least, the heat
storage capacity of the room must be specified. This physical value is depending on the
actual room temperature and on the material with which the room is filled (i.e. air).
Therefore, this pattern defines only the interface to a methodgetHeatCapacity. With the
specification of these six parameters, the pattern is fully bound to the object model and
code can be generated.
So far we have collected 14 patterns in a pattern catalog. This small number of patterns is
sufficient to model and create building simulators for thermal effects with many variants.
We’re now extending our catalog to include more physical effects (humidity, light,
exchange of air, and others) and different accuracies for these effects. The pattern catalog
is divided into three parts concerning physical effects, simulation artifacts, and structural
adaptation patterns. Inside these categories, the patterns are ordered using aggregation
and inheritance, making it easier to find special patterns.
Each group of patterns that provides a similar functionality uses the same interface.
Therefore, it is easy to exchange some patterns in order to build a simulator variant; only
local changes are necessary, the rest of the simulator model doesn’t have to be changed.
To use a pattern, every interface element which is described in the ‘Participants’ section
must be bound to the object model. Optional bindings are marked in the pattern descrip-
tion. The binding is currently done using a textual description language. We are imple-
menting a graphical editor to be able to perform pattern bindings more easily. Each
participant can be bound to an object, an attribute, a method, or to a valid Smalltalk state-
ment, depending on its type.
For example, to simulate the temperature of a room, a ‘room’ object is needed. The
actual temperature depends on heat flows that flow from or to the room through walls or
heating equipment. So the room has to be related with its surrounding walls. Therefore
there also must be a wall object which is connected to the room. To simulate the temper-
ature of a room, a pattern ThermalMass can be bound to it. With this pattern the room is
able to update its temperature using incoming heat flows. The heat flow through a wall
depends mainly on the difference of temperatures of its adjoining rooms. A pattern Ther-
malJunction provides the functionality to calculate these heat flows. Furthermore, the
calculation of the room’s temperature has to be continuously stimulated so that it is
always up to date. The pattern ContinuousComputation binds the room to our simulation
kernel library providing just this functionality (see figure 5). Mainly with this three pat-
tern bindings a first, very simple simulator can be modeled.
The binding for the pattern ThermalMass (figure 4) to an object ‘Room’ is textually
described with the following statements:

ThermalMass // Name of the pattern
bind: ‘target’ to: ‘Room’; // Target class
bind: ‘temperature’ to: ‘temperature’; // Bind attribute ‘temperature’
bind: ‘volume’ to: ‘volume’; // Bind attribute ‘volume’
bind: ‘compute’ to: ‘calculateNewTemperature’; // Rename template method calculate
bind: ‘getHeatCapacity’ to: ‘getHeatCapacity’; // Hook method getHeatCapacity
bind: ‘collectHeatFlows’ to: ‘collectHeatFlows’. // Bind name to hook method

Figure 5 shows some sample bindings graphically. Patterns are not only used to provide
simulation functionality to one object, they also act as ‘glue’ between different objects.

For example, the pattern ‘ContinuousComputation’ is bound to the Room and to an
object ‘Thread’ from the simulator kernel. This means, that the temperature of a Room
should be continuously simulated using a Thread that is controlled by the simulator ker-
nel, ‘gluing’ a Room with a Thread.

3.3 BUILDING TRANSFORMATION

After the simulator is modeled and generated, it can be used to simulate any building that
can be expressed by the building model. But to simulate one special building, the model
has to be instantiated. We use a conventional CAD program to draw the plan of the build-
ing to be simulated and transform it into code that can be used directly by the simulator.
This transformation is done semi-automatic.
We have chosen Speedikon as input to the transformation, because it is object-oriented
and operates with objects like ‘walls’ and ‘rooms’. Therefore the transformation to our
building model is easy.
Speedikon doesn’t handle physical descriptions of construction details like, for example,
heat storage capacities of walls. These values have to be entered manually. We use heu-

Room Wall

temp. heatFlow
2 n

building simulator kernel

Thread

Junction

Figure 5. Pattern bindings (sample)

ThermalMass bind: ‘target’ to: ‘Room’.

Junction bind: ‘target’ to: ‘room’;
bind: ‘relation’ to: ‘wallsOfRoom’;
bind: ‘otherSide’ to: Wall.

ContinuousComputation …

Continuous
Computation

Event

ThermalMass

ristics to get a useful building instance that can be simulated (e.g. by assuming default
values for material constants). Manual adaptations are needed to mirror the exact physi-
cal constants of the building. By now, the transformation is hard coded for one building
model but we will try to use transformation rules in order to be able to handle a greater
variety of building models.

4. Generating Simulators

After modeling the building simulator, program code has to be generated to get an exe-
cutable generator. We have written a code generator called PSiGene that creates Small-
talk code from the patterns’ code templates. With different code templates, PSiGene is
also capable of generating code for other programming languages. The generation takes
place in a two phase process.
Each pattern from our catalog has been coded as a Smalltalk class. During the first gener-
ation phase every pattern which was used in the model becomes instantiated. Afterwards
PSiGene performs syntactical checks. For example, every mandatory pattern binding
must be made, and for every hook method of a pattern a template method has to be
defined somewhere. At the end of the first phase, a detailed report of the pattern instances
is created.
All the code generation is done in the second phase. In a simple case, code generation
can be as easy as copying the pattern’s code templates to the target classes while per-
forming simple macro replacements. However, the generator has enough knowledge to
do some code optimizations. For example, if more than one code template is given,
PSiGene can choose one that fits best to the building model. This is due to the fact that
PSiGene does not only know of the pattern bindings, but also regards the building model.
Some of our patterns (like StateMachine) use software synthesis techniques because
their functionality cannot be fully described using simple code templates.
Figure 6 shows an example of the running simulator. The graphical in- and output con-
sists of several components which were manually adapted to the simulator. However, the
whole simulation functionality is generated. With special patterns it will be possible to
model and to generate the user interface, too.
So far, we have modeled several small building simulators using patterns. An example
we created, is a typical simulator for thermal effects consisting of 24 patterns (11 differ-
ent types of patterns were used). We suppose that each extra physical effect to be simu-
lated takes about 5 additional types of patterns. The number of used patterns depends on
the size of the object model. If many objects should be simulated, more patterns have to
be bound to these objects. The object model in this example consists of 15 building
object classes and 6 classes from the simulator kernel library. About 5300 lines of code
were generated from the building model and the patterns. A building with 9 rooms and
several doors and windows consists of about 300 objects.
Comparing the time used to model and generate a simulator using PSiGene with a manu-
ally written simulator shows that it is much more efficient using our method even if some
patterns which are missing in out catalog have to be created. Building variants of a simu-
lator is a matter of hours (from the concept to the running simulator).

5. Related works

We are providing a method to model and generate building simulators. To do so, we have
combined software engineering methods with application specific knowledge from the
simulation domain. The use of design patterns to create software models is a very actual
and much discussed topic. The main usage of patterns is during the analysis and design
phase (Gamma et al. 95, Pree 95), however, there are some approaches using patterns for
software generation (Budinsky et al. 96). Our patterns are small, domain specific pieces
that can only be used for software design. The main advantage in this is that we can gen-
erate the complete product code. We combined software engineering techniques with
domain-specific knowledge and software generators. Related work has been done, for
example, by Batory (Batory et al. 94).
The modeling of building simulators is a broad research topic with many facets. Using a
simulator during the evolution of a building design is done at the Carnegie Mellon Uni-
versity (Flemming and Mahdavi 93, 95). Here, the simulator is used in a two-way
approach: the simulation indicates performance issues of a building which could be used
in a reverse engineering step to automatically adapt the building to yield a better perfor-
mance. This simulator is optimized for this reverse engineering step. Explicit modeling
of building simulators has also been done by Filiz Ozel (Ozel 91) who uses object dia-
grams in conjunction with rules to create a simulator.

Figure 6. The running simulator

main window

heating control

temperature sensorwindow control

door

6. Conclusion and future works

The main advantage of our approach is that we provide a simulator generator instead of a
fixed simulator. The user is therefore capable of creating simulators which exactly match
his simulation needs without unnecessary overhead and without providing too detailed
information.
We are now collecting more patterns to be able to simulate more effects on different lev-
els of abstractions. All our patterns are collected in a pattern catalog which itself is part
of a dictionary describing the domain of building automation. This dictionary includes
formulas, objects, and models describing different aspects of the domain. We are devel-
oping search mechanisms to extract solutions to given design problems from this lexi-
con. A solution to the problem of thermal building simulation of a given room can be an
object model describing room objects and a set of patterns that could be bound to that
model.
Further work has to be done to support a user in developing building models using our
method. We are trying to incorporate modeling guidelines and checks for correct pattern
bindings in a pattern editor we are currently implementing.
From our experience, we believe that this method increases productivity and helps non-
experts of the domain to develop useful tools.

References

Alan, A., Pritsker, B. (1974) The GASP IV simulation language, Wiley, New York
Alexander, C., Ishikawa, S., and Silverstein, M. (1977) A Pattern Language, Oxford Univ. Press, New York
Altmeyer J., Riegel J. P., Schürmann B., Schütze M., Zimmermann G. (1997) Application of a Generator-

Based Software Development Method Supporting Model Reuse, in Proc. 9th Conference on Advanced
Information Systems Engineering (CAiSE*97), Barcelona

Altmeyer, J., Schürmann, B., and Schütze, M. (1995) Generating ECAD Framework Code from Abstract Mod-
els, Proceedings of the Design Automation Conference ‘95, San Francisco, California

Batory D., Singhal V., Thomas J., Dasari S., Geraci B., Sirkin M. (1994) The GenVoca Model of Software-Sys-
tem Generators, IEEE Software, September 94

Budinsky F. J., Finnie M. A., Vlissides J. M., Yu P. S. (1996) Automatic code generation from design patterns,
IBM Systems Journal, Vol. 35, No. 2, (http://www.almaden.ibm.com/journal/sj/budin/budinsky.html)

Flemming, U., Mahdavi, A. (1993) Simultaneous Form Generation and Performance Evaluation: A Two-Way
Inference Approach, CAAD Futures ‘93, Elsevier Science Publishers Ltd., Amsterdam, 161-173

Flemming, U., Woodbury, R. (1995) Journal of Architectural Engineering, Vol. 1, No. 4, 147-152
Gamma, E., Helm, R., Johnson, R., and Vlissides, J. (1995) Design Patterns, Addison-Wesley
Lamprecht, G. (1981) Introduction to SIMULA 67, Vieweg
Mahdavi, A. (1993) Open Simulation Environments: A Preference-Based Approach, CAAD Futures ‘93,

Elsevier Science Publishers Ltd., Amsterdam, 195-214
Milne, M. (1991) Design Tools: Future Design Environments for Visualizing Building Performance, CAAD

Futures ‘91, Vieweg Verlagsgesellschaft mbH, Braunschweig/Wiesbaden, 485-496
Ozel, F. (1991) An Intelligent Simulation Approach in Simulating Dynamic Processes in Architectural Envi-

ronments, CAAD futures 1991, Vieweg Verlagsgesellschaft mbH, Braunschweig/Wiesbaden, 177-190
Pree, W. (1995) Design Patterns for Object-Oriented Software Development, ACM Press, Addison-Wesley
Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F., and Lorensen,W. (1991) Object-Oriented Modeling and

Design, Prentice Hall, Englewood Cliffs, N.J.
Schulz, S. (1997) PSiGene - A Pattern-Based Simulator Generator, diploma thesis, University of Kaiserslau-

tern

