I am an architect who has the experience of using computers. A user and not an expert in digital design, therefore what follows is a foot soldier’s report from my practice over the past 10 to 11 years, including the role of computers in our approach to creating architecture.

I began my working life tending IBM mainframes for the British Shoe Corporation. The two IBM mainframe computers were state of the art computer technology of the mid-1970’s. There were two as one was used, and the other we needed for backup. The developments in computing in terms of size, increase in storage capacity and faster processing speed over the past 30 years, is a technological acceleration which is difficult to visualize. The IBM historian in the UK suggested “that if cars had developed in the same way they would be given away free with corn flakes”. A frightening thought as our cities grind under the pressure of increased car ownership. British Shoe Corporation also had a reserve system some sixty miles away and a halon extinguishing system in case of fire - such was the capital and commercial value of the system. We carried out transitional computing for a number of European countries. The CAD was limited - pen potters drawing shoes, drawing them less well than an average A level or high school student! My interest was primarily in art and not computers; my aim to earn enough to tour Europe to see key work ‘in the flesh’ not just in reproduction.

At the university I attended, to find a computer, I had to go to the Physics department or to Building Science. I first used a computer in practice in 1987, a Mac SE with a 9 inch black and white screen, to write a performance specification for curtain walling of a major project in London. A complex task was rendered much simpler by word processing software which we now take for granted.

In terms of architecture it is the qualities that are immutable that interest me: the link with those that built San Sophia in Constantinople; Alberti in Renaissance Italy; or Eames in California, whilst responding to the challenges of modern life and taking up the opportunity of current technology. The apartment Brooks Stacey Randall designed for Chris Lowe of the Pet Shop Boys demonstrates this approach. We maximised the sense of space and placed the control of the quality of light directly in the hand of the client. A key part of my work has been the exploration of the use of materials, to achieve a particular element with the overall architectural intent with an economy of means. In Chris’ apartment the stair is made of clear structural glass to provide transparency, to allow the space to follow. However the blinds are thin layers of birch veneer on toughened glass to provide a warm translucency. The apartment is designed to read as a single volume, a single room, the function of which can change depending on the different pods’ facilities brought into use. By pulling out a particular pod, the main space changes from kitchen/dining room to dressing room to music and recording room. The roof area is brought into everyday use becoming a terrace accessed via a folded plate glass stair and a hydraulically opening roof light. In summer he can lie in bed beneath the stars with the roof light open and enjoy views of St. Paul’s Cathedral.

Design a process of creative exploration
Problem solving has been presented as a model of the design process in architecture as if analysis of programme, site, context, precedent and the available means of construction is sufficient in itself. Creativity and the intuitive leap are essential. Design is more clearly defined as a continuous and reiterative process of value judgements. Each architect generates their own criteria and aims within the social and economic context of their work, which may well vary greatly with each project. Responding to not only the brief but to the contribution of the client and the design team. Within this process of construction one creates problems, often they are ‘solved’ as they arise by circumvention. When debating how architecture should develop, there is always a tendency to dogmatically reject the values other designers have brought to their work. It is more important to establish the criteria for a particular project and follow this through rigorously within its own intellectual framework. I consider architecture more akin to the creation of a work of literature than of reductive problem solving. Design is in essence a delta of opportunity, an exploration of the possible. The art and craft of architecture should throw off the remnants of scientific reductivism much as science has itself.

Design by Collaboration
The design and delivery of modern buildings is in essence a collaborative process, between the client and the architect, the architect with the structural engineers, mechanical and electrical engineers, the quantity surveyors. Initially just in the design team office this process then reaches out to site, workshops and factories, establishing a creative dialogue with the specialist subcontractors who will ultimately make the components of the project. The Japanese industrial designer Sori Yanagi states it very clearly: “Design is not something achieved by a individual working alone. If three put their heads together, goes a Japanese proverb, the wisdom of Manjusri Bodhisattva can be theirs. A designer cannot have
too many gifted collaborators.″¹ This includes the software engineers who have created the programmes we use as gifted collaborators who should be chosen with a care.

The architecture of Brookes Stacey Randall is characterised by the commitment to working collaboratively. This is demonstrated in all of our projects including the Thames Water Tower which is located on the roundabout at Holland Park. This is probably the world’s largest public barometer which also houses a surge pipe, a safety device for the 80 mile London ring main, which provides drinking water for all of London. The Thames Water Tower was designed in collaboration with students from the Royal College of Art.

The tower is subdivided into five sections each of which appear to fill with water responding to changes in climatic pressure. This is detected by an electronic barometer. The scale of the barometer is defined by stainless steel grillages at 2m centres, which are supported on stainless steel castings, which were specially produced working with a foundry in Edinburgh. These castings also support the glazed assembly. The tower is powered via solar electricity obtained from the photo voltaic panels mounted at the top of the tower on the solar vane. The water is only a thin film sprayed onto the curved glass. The amount of water used within the tower is minimal - less than 0.5 cubic metres, to the surprise of many engineers - and is recirculated via collection tanks mounted within the base.

Initial prototypes used to study the water flow were built using perspex due to the long lead time for toughened glass. However the adhesion of the water to perspex is significantly different to its adhesion to the glass. During the design development process this and many other issues were resolved by working with water specialists from Glossop, Derbyshire. This is an example of physical material qualities I believe computer simulation will not be able to simulate even by the end of the next millennium, in the year 3000.

The approach to the design of the structure and enclosure is one of increasing sophistication as it rises up the tower to the solar vane. The proportion of the tower was carefully considered both overall and in the scale of the visible elements. The design sought to create a striking silhouette on the night sky. The stainless steel lightning conductor rises from the elliptical aluminium section which supports the solar array. The project is a celebration of the unseen engineering achievement of the new ring main and has won a number of design awards. "Such is the inspirational nature of the tower that the panel felt its qualities transcended the question, is it sculpture or architecture?″ RIBA Award 1995

“It is one of the most successful pieces of public art in Britain.”
Hugh Pearman, Sunday Times, 8 January 1996

The Thames Tower is a working model of a responsive building. In the design of the tower we sought to detail the complete assembly in such a way that the play of light is encouraged as it strikes and penetrates not only the glass and water but also the polished surfaces and components within the tower to create a visually poetic effect - ever changing due to weather conditions.

East Croydon Station
In 1989, Brookes Stacey Randall was commissioned by British Rail to design a new railway station at East Croydon. Croydon, a suburb of London, had outgrown its existing dilapidated station building which dated from 1894. Over 15 million people were using the station annually. Brookes Stacey Randall’s aim was to produce a building that has constructional elegance and is enjoyable to use through its legibility. For example, the glass of the canopy is carried over the ticket hall in the centre of the building as a single plane of glass. This relates the entrance to the concourse, from where the ramps descend to the platforms below. The smooth flow of passengers is clearly visible, as customers move between trains, buses, cars, taxis or bicycles.

Early in the design process we built an Intergraph three dimensional model of the station, which was then rendered by project engineers Anthony Hunt. This model was invaluable in the development of the steel frame. The practice set about creating a WYSIWYG architecture: what you see (at the design stage) is what you get (on site). However we also modelled the station physically and, in the development of the glazing system in particular, sketches were vital.

The design process is primarily about communication. The initial ideas may come from discussions; the first sketches communicate as much to their author as to others. Later the drawing and models are primarily communicating to others usually as part of a contractual arrangement. The sketch will remain a vital and dynamic tool in the hands of architects.

Glazed walls - from sketch to AutoCAD
The wall glazing has been designed for maximum transparency, yet is robust enough for the context of a railway station. Toughened glass is able to sustain 4 to 5 times the stress level of annealed float glass. However its Youngs Modulus is unchanged. Therefore in the design of glazing systems for public areas it is the control of deflection that is critical. It would be possible to design a system which was safe yet would terrify the public in strong autumnal winds.

At East Croydon Station walls comprise 12mm clear toughened glass, restrained by purpose-made Mullions. The design developed from sketch to AutoCAD drawing, from prototypes and to full size test rigs prior to the site erection.

The desire for transparency and the need to accommodate ± 50mm movement at the head of the glazing led Brookes Stacey Randall to design and develop a project specific glazing system. This economical assembly is flexible and provides an elegantly articulated alternative to the standard curtain walling box sections. The elliptical mullions are set at 3 metre centres, and each pane is supported at only four points, using a countersunk bolt bush fixing. Therefore to limit deflection, stainless steel cast arms supporting modified Planar fittings reducing the effective span to 2.4 metres thus reducing the deflection.

The overall assembly was successfully tested to BS 5368 Parts 1 to 3 at Taywood Engineering. Prototyping and testing is essential in the development of innovative glazing assemblies. The transducer in the test rig is the moment of truth for this project based development process. Even in an era
of computer generated computation and virtual reality, the knowledge and confidence gained through physical testing is incomparable.

It is the project specific stainless steel castings which convert the essentially linear aluminium extrusion into three dimensional building component. Casting provides a high level of accuracy and economy and is an affordable way of reintroducing craft and quality into current construction.

Railway stations are an important part of people’s lives, whether it is a daily commuter, someone travelling on vacation, or simply waiting for a loved one to arrive. As such, they carry a significance beyond the realms of mere necessity. At East Croydon Station, Brookes Stacey Randall have sought to make the experience enjoyable in the hope that it will contribute to the life and culture of London.

East Croydon Tram Stop

Trams were almost totally phased out of use as public transport in Britain in the late 30’s and early 60’s. They are currently being reintroduced into South London, an initiative already implemented by a number of other British Cities, including Manchester and Sheffield. Brookes Stacey Randall was invited by the London Borough of Croydon to make proposals for the Tram stop at East Croydon and the infrastructure needed in the town centre. Brookes Stacey Randall saw this as an opportunity to remove the ad hoc clutter of street furniture which had accumulated in the town over the past 90 years or so, replacing it with a coordinated and integrated system specifically designed for Croydon. The system started with a simple flush floor light and directional indicator, and working through bollards, bike stand litter bins, phone boxes to signs, bus stops, street lamps and traction poles. It incorporated traffic lights and festive banners. The system culminated in larger scale tram strops, such as the poles. It incorporated traffic lights and festive banners. The system culminated in larger scale tram strops, such as the one outside East Croydon. For the exhibition ‘Croydon 2000’ we prototyped the light and a bench. The primary components of the system were two sizes of stainless steel castings in the form of tripods. The challenge was to make public transport as attractive as the private car through the contribution of good design. This transformation could be of enormous benefit to our towns and cities.

Tadicom

This was the design of a microelectronics production facility in Jena, Germany for Tadicom GmbH in association with Harry Abels then of Witt & Jongen. My office used computer models to study options for the lightweight structure seeking to optimize the span and economy of the roof. The structure achieved a very low steel weight by its use of a masted structure and a long span deck. The assembly hall provided a flexible and cost effective production space on two stories. Based on experience of earlier masted structures I developed with engineer Bob Barton the cast nodes of the structure designed to interlock and yet form self draining connections. This provided consistent pin details which would remain pins in use, unlike the conventional rod assembly, which is like a bicycle change and will lock up on painting. In taking on this engineering dilemma we created a more expressive form of connection. Each connection was modelled in form•Z to test the visual intention of these bone like connections.

The need to develop prototypes to inform the design and production process (design with production) and harnessing the digital data has in the past 10 years led to the development of **Rapid Prototyping** techniques, to the extent that it is possible to envisage ‘physical desk top publishing.’ Current techniques for rapid prototyping include photosensitive resins and CAD CAM milling. In the later ones the three dimensional model has been produced, the digital coordinates can also be used to control three axis milling machines which will ‘erode’ the final form from a block of a relatively soft material such as Styrofoam. This is particularly appropriate for the prototype of patterns for metal castings, as envisaged for Tadicom. However within our office to date I have found that the fastest prototypes are cut by hand from balsa, foam board or Styrofoam. Perhaps the next threshold in digital design is affordable rapid prototyping.

CAD CAM can be contrasted with the methods used by Sir William Lyons, the founder of Jaguar cars. His colleague Bob Knight describes Sir William Lyons’ approach: “he could not draw to save his life; he could only style in metal ... Lyons would walk down to the stilling shop and start waving his hands in the air to show what he envisaged. A sheet metal worker would be with him, watching all this, and would set about trying to create what he thought was wanted. It might have been unconventional but it was brilliant and very successful.” In 1948 Jaguar produced the XK120 Bob Knight states that “Lyons did XK120 in no time: it took only six weeks to design and build the aluminium prototype.” Perhaps the focus clinics have slowed design development in some industries to a snails pace despite the technology available to them.

Oxford Brookes University Lloyd Studio

The Architecture Department of Oxford Brookes University is very successful but chronically short of space on a crowded campus. To ease this problem an extension on the top of an existing building was proposed providing a new studio and seminar space. Building on an existing 1980’s building it was essential to keep the total constructional weight to a minimum. The studio is an innovative grid shell...
which was critical in terms of its architectural role, its per-
overall canopy for the station. This created a roof element
high level of use meant that it was possible to consider an
be safely transported from the six platforms of the station in
quarters of the Wembley capacity, and as many people as could
was specified by London Underground Ltd for all its sup-
chose Microstation as our primary 2D and 3D package as it
work in. Computer models and two dimensional drawings
were used very successfully as part of a public consultation proc-

Wembley Park 2000 - Phase One

This phase of Wembley Park 2000 was needed in advance of
the main station to safely manage the crowds for Euro 96.
Therefore external works including a new access stairway,
with a capacity of 50,000 people per hour, was placed on a
fast track construction programme by LUL Project Man-
agement. The public square, formerly a traffic roundabout,
was conceived as a meeting place and a quiet place of refuge
from the crowds and is now called Olympic Square. It com-
prises a concave surface formed from high quality hard land-
scaping of granite sets and limestone. It is one of London’s
newest public spaces. Brookes Stacey Randall organised a
competition for a sculpture to act as a focus within the square
and the sculpture has come to symbolise the regeneration of Brent. The competition was won by Danny Lane with whom we were delighted to work.

I think it is critical that computer modelling is used a com-
communicative tool and not used to seduce people into the con-
struction of mediocrité, if well presented architecture. There
is also a tendency amongst some contemporary architects to
allow computer modelling to dominate their exploration of
form. This leads to some schemes which are beyond the
physical or economic capabilities of the particular design
team, resulting in buildings which are impoverished by the
use of digital design.

I also concerned that the intellectual property in software is
better respected than the intellectual property in architec-
ure.

Enschede Integrated Transport Interchange

Working with Harry Abels of I/AA Brookes Stacey Randall
designed the masts and stoa of the new Bus Station within
the I/AA masterplan. This urban intervention has been de-
dsigned to create a new civic identity for the Municipality of
Enschede and a transport interchange of simple functional-
ity. The design is based on the use of information technol-
y to minimise the physical construction required and fa-
ilitate interchange. The flip dot screens of the bus station
indicate which island to board the bus to your desired desti-
nation. Once the train station refurbishment is complete
passengers will be able to wait in the cafe or restaurant and
only go outside once their bus is scheduled. The arrival and
departure of the buses is a computer coordinated ballet of
movement. The proportions of the Stoa is a response to the
1950’s concrete frame of the train station designed by
Schelling. This is realised in up to date constructional technology seeking to fulfil the aspirations of the Municipality.

At this time so many hours in the office were being spent staring at computer screens we deliberately reintroduced a wider use of physical models, particularly at an early design stage. I have found that these models communicate our intentions well to clients, who see sketch models in balsa, for example, as a much more interactive tool than a costly physical presentation, a model, or an apparently seductive computer rendering. They are happy to propose and witness changes on the spot.

Blains Fine Art

This fine art gallery is the conversion of a very introverted 1970’s furniture showroom in a Grade II listed London terrace. The stock ranges from Canellotto to Francis Bacon and sculpture by Henry Moore. Brookes Stacey Randall established that the property leased by Blains had a much greater spatial potential than originally envisaged by the client.

A spacious and relaxed gallery has been created by opening up and covering a central courtyard and creating the longest possible internal views within the site constraints. The spatial potential and organisational arrangement we explored from the start of the design process by the use of accurate physical models. The project progressed swiftly via the iteration of sketches, physical models and computer based drawings on Microstation.

This project has been successfully completed on a very closely controlled budget and to a tight schedule.

The Boathouse

We were approached by the owner of a house at Streatley, Berkshire. His property is set in a mature and beautifully kept garden which gently slopes for 60 metres to the bank of the Thames. He suggested he wanted to build a boathouse, but planning permission had been turned three times.

What a wonderful opportunity to design a boathouse! We thought a functional starting point might be the size of the boat. However our client did not own a boat. He agreed to buy one if necessary. Having visited a number of boat yards it became clear that he had no particular desire to own a boat. He and his wife wanted to enjoy the river life and their garden from the banks of the Thames in comfort, and be able to entertain friends; to be able to have a cup of tea or a glass of Chardonnay in comfort by the river side.

The Boathouse sits approximately 3 metres above river level offering wonderful views along the Thames in both directions. The transparent enclosure and the relationship of the building with the water allowing the occupants to believe that they too could be water-borne.

Brookes Stacey Randall tendered the work and everything was ready to start. However the client stated that “Under no circumstances should the building works continue during the summer months whilst the garden is in use, the flowers and lawn come first.” Construction was therefore delayed until the winter and as many elements prefabricated as possible. For example, the steel frame was craned into position fully welded and is secured to the submerged piles. The cantilevered section is supported by a pair of tapering solid timber (Ekki) legs. The roof and the hull were pre-fabricated off-site and bolt fixed to the steel frame. These timber and stressed plywood fabrications are clad with bright copper sheeting with welted seams.

Off the left hand column is the only piece of fixed furniture, the galley unit, which hovers over the floor plane. This unit contains an instantaneous hot water heater, sink controls for lighting, electrical systems and a fridge. A heating system is housed in the hull.

Maximum transparency has been achieved through allowing the steel frame to act as the main load carrier, whilst the glass provides the transparent envelope. Although a simple decision this avoids proliferation of secondary structural elements working with the glass envelope. There is no stainless steel, no bracing, no glass fins. As a result your attention is not diverted to a glass assembly and you can concentrate on the river, and the garden landscape.

The Boathouse was designed to work with its site, to access the natural attributes of the river and man’s interventions with it over the past centuries. The Boathouse demonstrates the courage and commitment of the client to contemporary architecture, suitable for such a rural setting. I believe the Boathouse has achieved that rare quality that it appears to always have belonged in this landscape.

Architecture is more than packaging, in a confusing world littered with ephemera it can provide a authentic voice. It can be both profound and purposeful. It is possible to maintain the highest quality of construction and accommodate change to explore the edges of the possible. I have found computers vital in achieving this goal.

You can write poetry on a computer, however it is poetry and not digital data.

This article was checked using a UK dictionary in order to preserve the original British spelling.
Hong Kong is a fascinating city, but I need to get away from time to time to keep my sanity; to escape tropical Asia and return to my temperate North American roots; "to the autumnal land," as Mark Gross or Bob Young or somebody put it, "of gray skies and trees without leaves." Ah, it’s great to be back up north in November.

For the past three years, I’ve been combining my annual leave with a bit of conference leave, to aggregate a chunk of time for a North American tour that begins with ACADIA’s annual assembly. This gives me the best chance to meet scattered friends and family on a single sweep across the continent. Outside of the technical sessions, ACADIA conferences have the air of a class reunion. So, when my ACADIA confrères ask me to write a conference article for the Quarterly, how can I refuse? Not easily, it seems.

I’ve been to nearly every ACADIA conference since I joined at Ohio State, back in ’83. I missed St. Louis ’94 and Seattle ’95, my first two autumns in Hong Kong, but I’ve made it to all the others. I particularly looked forward to Québec ’98, for the sight of fall colors and the taste of French culture.

I don’t have much interest in writing an impersonal recitation of technical content. As I see it, that’s what the Proceedings book is for. I hope you’ll indulge a bit of personal rambling as I recall my trip to Québec. I suppose that everyone’s experience is unique, and there’s no use pretending otherwise.

I arrived in Ann Arbor, Michigan, on Sunday October 18. The autumn colors were spectacular. Two years ago I arrived too late, and last year I was too early, but this year I met them spot-on. After taking a couple of days to recover from the pan-Pacific flight and shift my body clock back by 13 hours, I left Ann Arbor on Wednesday morning, riding with Scott Johnson and George Yeh on a two-day drive to Québec City. We stopped for dinner in Toronto’s “Chinatown”, and spent the night in Kingston, Ontario. Between stops, we fueled ourselves with the usual automotive cuisine of chips and soda, and as we crossed into “la belle province” on Thursday, I regaled my companions with my solo rendition of “Allouette”.

To an Anglo-American like me, Québec is, as Texas claims to be, ‘like a whole ’nother country.” Yet, I imagine some ancestral connection to it. My home state of Michigan was once part of French America. My genes are half French. My mother’s French ancestors weren’t Québécois; they arrived in New Orleans and steamed up the river to Ohio. But, that’s neither here nor there …

We arrived in Québec City around 5 P.M. on Thursday, winding our way up to Vieux-Québec and the Hôtel Manoir Victoria. After checking into our rooms, we picked up a conference map at the hotel desk and set out for the site. A short walk through the crisp autumn evening brought us to Université Laval, École d’architecture.

Ah, the gang’s all here. “Hey, good to see you again … When did you arrive? … We drove two days from Ann Arbor.” It’s always interesting to meet familiar people in unfamiliar places – there’s a shared sense of discovery as we exchange notes on routes and rooms and restaurants. It turns out that Peter Anders also drove from Michigan. We could probably have accommodated a fourth person in Scott’s decommissioned Ford Taurus police cruiser, with some rearrangement of road atlases and snack sacks. C’est la vie.

Having completed the conference registration business, Scott headed for a meeting of session moderators and authors, but George and I were free to roam. We left the school and proceeded up the hill, past the incomparable Château Frontenac, along the Terrasse Dufferin, past La Citadelle to Le Belvédère, then circled along the top of the ramparts and through the old city, back to the hotel for the night.
We rose early on Friday and headed back to the school of architecture for the opening session. The school occupies quarters that once housed the Petit Séminaire de Québec. The venue for the technical sessions was l’Autre Chapelle (the Other Chapel). Built in 1898 and consecrated in 1900, the chapel was secularized in 1989 and is no longer dedicated to religious use. (The Roman Catholic cathedral is just next door.) Nevertheless, the chapel’s antique liturgical glory is undiminished. Virtually all of the ornamentation – the stained glass windows, the sculptures and paintings, even the altars – remain intact. The chapel now forms part of the Musée de l’Amérique française and serves as a concert hall, auditorium, and conference room.

Quoting from a museum pamphlet:

“*In the hushed atmosphere and subdued lighting of the former chapel, the special character of the surroundings gradually makes itself felt … the chapel’s Second Empire interior resembles that of the Église de la Trinité in Paris. Using sketches by architect Paul-Alexandre de Cardonnel, [Joseph-Ferdinand] Peachy created a remarkable effect.*”

No doubt about it – it was a remarkable setting for a conference on computer-aided architectural design. In fact, it generated as much discussion as most of the papers. Remind me again – what is it that we’re trying to aid with computers? No computer intruded in the design of this space. The intricate details and multitude of colors and textures would severely strain any CAD system within reach of most architects today.

I’m saying it would be difficult to model – not impossible. Maybe next year we’ll see a rendering of l’Autre Chapelle on one of those form•Z or 3D Studio wall calendars.

Speaking for myself, I’ve never seen a CAD model with sufficient detail to do justice to this space.

Nowadays we’re generally much less ornamental, even in religious architecture. We no longer have the patience for the craftsmanship. Of course, we can use CAD/CAM to mass-produce decorative doodads by the bazillions, but no one wants to be so conspicuously cheap. What’s the point of having plastic injection-molded Corinthian capitals, when everyone knows you can buy them at the hardware store for a few bucks each? When everyone starts installing them by the bazillions, their meaning is lost in the noise. Better to assert that we didn’t really want any of that stuff anyway. Besides, it’s too difficult to model that level of detail in the context of an architectural space – which brings us back to the issue of craftsmanship.

But I digress …

The chapel is also solid evidence that simulation predates computing. I reached out my hand to feel one of the smooth marble columns, and discovered it wasn’t marble at all:

“The walls, ceilings and columns are of sheet metal, painted in trompe-l’œil style … But not everything is illusion in the chapel. The main altar and the side altars are in white marble, the woodwork is in red cherry and the floor is covered in ceramic tiles.”

The rear-projection screens were set up where the Communion rail would once have been, and the projectors were back in the shadows of the sanctuary, on either side of the antique white marble main altar. Aesthetically, this seemed kind of – I don’t know – rude somehow. But, on the practical side, it saved space in the nave where the audience was seated, and reduced the noise level there as well. The side aisles accommodated the coffee table and exhibitor booths for Graphisoft, Paxar (not Pixar), Autodesk, Bentley, and Auto•des•sys.

The authors presented their papers under the contemplative gazes of the sculpted saints and clerics that line the aisles of the chapel. In an interlude between papers, as my eyes drifted up from the screen, I caught sight of something else, above and behind the screen: a human skull. Mounted on the piers that flank the main altar are reliquaries bearing the bones of St. Clement and St. Modestus.

Ashes to ashes, dust to dust. I’ve always tried to write software that will survive me – a sort of immortal digital imprint of my thought processes. “C” for centuries. FORTRAN forever.

And then I got to thinking about the boneheads responsible for this Y2K fiasco. What the hell were they thinking? Did they really have so little faith in what they were doing that they couldn’t imagine it would survive a few
decades? Criminal negligence! May they be purged from memory for evermore!

But I digress …

Nearly as impressive as the architecture was the team of translators. I was amazed how they could listen in French and speak in English, or vice-versa, simultaneously. The authors made no concessions. In usual conference style, they packed as many words as possible into the time available, many of them fairly technical and esoteric. No long pauses, no dumbing down. Somehow, the translators kept up with the steady stream of verbiage.

For myself, I number it among the accomplishments of my life that I am able truthfully to say, “I don’t speak [French | Russian | Cantonese],” in each of the respective languages. Carmina Sanchez told me how to say, “I don’t speak Spanish,” but I don’t quite remember – I think I’m missing a pronoun.

Anyway … back to the conference. We didn’t spend all of our time in the chapel. There were other things to see and do.

On Friday night, Chris Yessios and Autodessys sponsored the Form•Z awards banquet, in a restaurant at the Hôtel Manoir Victoria. The winner in each category was invited to come forward and give a short presentation of his or her project.

Saturday lunch, in the school, Peter Anders chaired a round-table discussion entitled “Beyond Y2K”, wherein we debated the role of ACADIA in the Twenty-First Century. Following lunch was a tour of the school’s historic structures.

Later in the afternoon we gathered outside, in front of the Basilique cathédrale Notre Dame de Québec, to board buses for a tour of the old city. Québec is the only walled city in the Western Hemisphere north of Mexico. It has survived several sieges – the British against the French, the Americans against the British. In 1985, UNESCO added Vieux-Québec to its list of world heritage sites. The cathedral itself, originally built during the French regime, was seriously damaged during the 1759 siege, razed by fire in 1922, and rebuilt in 1925 according to the original plans. It includes works of art donated by Louis XIV.

For a web-based Vieux-Québec guidebook (English version), point your browser here:

http://www.otc.cnq.qc.ca/eng/otc3e.html

The bus tour ended at the Quartier Petit-Champlain, one of the oldest commercial districts in North America, in the Lower Town on the banks of the St. Lawrence River.

There, we boarded the M. V. Louis Joliet for an evening river cruise and the annual ACADIA banquet. A healthy dose of wining, dining, and table talk left the crowd in a festive mood. Following that, the general membership meeting was mercifully short. It included brief reports from ACADIA officers and representatives of the sister organizations – ECAADE, CAADRIA, and SIGRADI. Outgoing President Branko Kolarevic handed the reins of power to Douglas Noble.
Chris Yessios received a special award for his achievements: one of the 24 founding fathers of ACADIA; Site Coordinator for the 1983 conference at Ohio State University; former President and Steering Committee member; founder of Auto•des•sys and chief designer of Form•Z; host of the previous night’s banquet. I may grant him another award, for “most appearances in impromptu conference photographs.” I didn’t notice it as I was shooting them, but after getting my prints developed it struck me that a disproportionate number included Chris. (This article includes only a select few photos.)

When finally the boat returned to the pier, we climbed the Escalier Casse-Cou (Break-Neck Stairs) from the Lower Town back to the Terrasse Dufferin and the Upper Town. According to our tour guide, the stairs are so named because of their somewhat hazardous condition during icy weather. Fortunately, we weren’t faced with that. After another evening stroll around the terrace and the old city, we returned once more to the hotel.

Sunday morning, we were back in l’Autre Chapelle for the final technical sessions. Friday and Saturday had been mostly cloudy, but Sunday dawned in glorious sunshine that filtered through the chapel’s stained glass and helped greatly to illuminate the space.

After the official close of the conference at midday, a few of us headed out on a self-guided walking tour through the old walled city and up to La Citadelle for a visit to the fort museum. The 22e Régiment Canadien Français is still on active duty in the Citadel. The regiment’s motto, “Je me souviens” (meaning “I remember [my heritage]”), appears also on the provincial automobile license plates and inspired the title of this article.

Communication among our little tour group was an interesting challenge. We included, among others, Taiwanese and Indian (from India) immigrants to the USA, an American working in Hong Kong, and a Bulgarian teaching in France. Among six people, we counted fluency in Bulgarian, English, French, Hindi, Mandarin, Russian, and Spanish. Unfortunately, the Bulgarian-Russian-French parts were vested entirely in Lozka, while the English-Hindi-Mandarin-Spanish parts were distributed among Shailesh, Ruth, Scott, George, and me. Fortunately, the tour guide was bilingual (at least) in French and English, so she was able to bridge the linguistic gap between Lozka and the rest of us. This was the first ACADIA conference outside of the United States, and by far the most international in character.

After the tour, we bid our farewells to each other and returned to the hotel for the last time. As the sun set, Scott, George and I packed into the Taurus to retrace our route to Ann Arbor. So ended another ACADIA.

• • •

Every conference is different. Every site is unique. I’ve flown over Salt Lake City a few times, but I’ve never actually been there. I’m looking forward to ACADIA ’99.