
Architectural Computing: Communicating Information and Ideas 321

A Brief History of Graphics
Standardisation

The standardisation of computer graphics has a
history that goes back to the late 1960’s. With the
growth of interactive computer graphics following the
introduction of the first Tektronix storage-tube displays,
the portability of computer graphics programs became
a real issue. A number of packages, including
Tektronix’ own Plot-10 (Plot-10, 1971) and Cambridge
University’s GINO-F (CAD Centre, 1975), acquired
the status of “de facto” standards.

The formal development of standards began in
the 1970’s with:

• the establishment (in 1972) of the Graphics
Standards Planning Committee (GSPC) by
ACM SIGGRAPH (GSPC,1977), and

• the Seillac I workshop (held in May 1976)
called by Richard Guedj under the auspices
of IFIP WG 5.2 (Guedj, 1976)

• a meeting of international experts, following
the proposal that GINO-F should be adopted
as an international standard, deciding that no
existing computer graphics system could he
considered suitable for a standard

Progress? What Progress?
Alan Bridges

This paper briefly reviews some of the history of computer graphics standardisation
and then presents two specific case studies: one comparing HTML with SGML and
Troff and the other comparing VRML with the Tektronix® Interactive Graphics
Language implementation of the ACM Core Standard. In each case, it will be shown
how the essential intellectual work carried out twenty years ago still lies at the
foundations of the newer applications.

Keywords: SGML, HTML, VRML.

Typical configurations of the “best practice”
systems at that time consisted of a device independent
“front end” driving one or more device specific ‘back
ends” variously called “code generator” or “device
driver” (see Figure 1). The front end was driven by
the applications program via a set of (normally Fortran)
subroutine calls, whilst the back end would typically
be a single entry point routine, which for portability,
would supply any of the features not directly supported
on a device, within the limits of portability supported
by the system. The back end would typically have
portions of code specific to the requirements of
interfacing to a particular operating system and would
thus be both device and machine dependent.

This overall architecture was recognized as giving
rise to two principal contenders for standardization.
The first is the application/graphics system front end
interface and the second the Device Independent/
Device Dependent interface between the front and
back ends. The decision taken at Seillac was that the
first step should be to standardise a kernel graphics
system on top of which applications-orientated
graphics packages would sit. It was generally agreed
that any standard would specify a set of virtual input
and output facilities, which would be realized in terms
of the functions of particular graphics devices. These



Architectural Computing: Communicating Information and Ideas322

Figure 1 (left). Structure of a
device independent graphics
system

basic principles underlie much of todays computer
applications, in particular, the structure of HTML and
VRML.

Computer Graphics Standardisation

The most important work in these early standards was
in the field of portability. In computer graphics the
following types of portability may be defined:

• Applications Portability - the ability to move a
suite of application programs from one system
configuration to another with minimum
(preferably no) work in adapting the code,
whilst keeping as much of the “look and feel”
of the application as possible.

• Graphics Package Portability - the ability to
use the same range of graphics facilities in a
variety of situations. This is typically a
combination of the host machine
independence and device independence
listed below, but also needs to reflect how
thorough the implementation of the system is
in simulating any features which the
underlying hardware and devices do not
supply directly.

• Host Machine Independence. A graphics
package, which is host independent, is able
to run successfully on many underlying
computer systems, from a variety of suppliers.
In practice, this may well mean that a supplier
has implemented the system on a variety of

hardware rather than supplying a system,
which can genuinely be moved between
machines.

• Device Independence. The ability to use the
same code to control a wide range of graphics
devices implies a careful structuring of the
graphics package implementation to isolate
the parts of the code which are specific to a
particular display or input device in a small
proportion of the overall system. Substitution
of this small portion of code then allows the
addition of a different device to the repertoire
of devices supported by a graphics package.

• Programming Language Independence
implies that the same facilities should be
available from all common programming
languages.

The World Wide Web and HTML

Whilst undertaking consultancy for CERN in 1980, Tim
Berners-Lee, wrote a notebook program “Enquire-
Within-Upon-Everything”. Back at CERN in 1989, he
produced two internal papers, based on his earlier
work, “Information Management: A Proposal” and
“HyperText and CERN”. The proposals were approved
and in 1990, Berners-Lee began work on a hypertext
browser, which he called “WorldWideWeb”. This
ongoing work was publicised on the net at
alt.hypertext, comp.sys.next, comp.text.sgml, and
comp.mail.multi-media. Marc Andreessen at NCSA
released the first alpha version of Mosaic in February
1993 and, on April 30, 1993 CERN’s directors declared
that WWW technology would be made freely available
with no royalty payable to CERN. In March 1994
Andreessen left NCSA to form “Mosaic
Communications Corp” (later Netscape). The rest of
the history is relatively well known.

Given this timetable, Berners-Lee did not start
from scratch. His initial specifications of URLs, HTTP
and HTML were based on existing technology,
although they have been refined as the Web
technology spread. HTML is a form of SGML. The



Architectural Computing: Communicating Information and Ideas 323

Standard Generalised Mark-up Language (SGML) is
an international standard for the definition of device-
independent, system-independent methods of
representing texts in electronic form.

Historically, the word markup has been used to
describe annotation or other marks within a text
intended to instruct a compositor or typist how a
particular passage should be printed or laid out.
Examples include wavy underlining to indicate
boldface, special symbols for passages to be omitted
or printed in a particular font and so forth. As the
formatting and printing of texts was automated, the
term was extended to cover all sorts of special markup
codes inserted into electronic texts to govern
formatting, printing, or other processing. A markup
language specifies what markup is allowed, what
markup is required and how markup is to be
distinguished from text.

There are three characteristics of SGML which
distinguish it from other markup languages: its
emphasis on descriptive rather than procedural
markup; its document type concept; and its
independence of any one system for representing the
script in which a text is written

A descriptive markup system uses markup codes
which simply provide names to categorize parts of a
document. Markup codes such as <para> simply
identify a portion of a document and assert of it that
“the following item is a paragraph”. By contrast, a
procedural markup system defines what processing
is to be carried out at particular points in a document
e.g. “call procedure PARA with parameters 1, b and x
here”. In SGML, the instructions needed to process a
document for some particular purpose (for example,
to format it) are sharply distinguished from the
descriptive markup which occurs within the document.
Usually, they are collected outside the document in
separate procedures or programs. With descriptive
instead of procedural markup the same document can
readily be processed by many different pieces of
software, each of which can apply different processing
instructions to those parts of it which are considered
relevant.

SGML introduces the notion of a document type,
and hence a document type definition (DTD).
Documents are regarded as having types, just as other
objects processed by computers do. The type of a
document is formally defined by its constituent parts
and their structure. The definition of a report, for
example, might be that it consisted of a title and
possibly an author, followed by an abstract and a
sequence of one or more paragraphs. Anything lacking
a title, according to this formal definition, would not
formally be a report, and neither would a sequence of
paragraphs followed by an abstract, whatever other
report-like characteristics these might have for the
human reader. If documents are of known types, a
special purpose program (called a parser) can be used
to process a document claiming to be of a particular
type and check that all the elements required for that
document type are indeed present and correctly
ordered. More significantly, different documents of the
same type can be processed in a uniform way.
Programs can be written which take advantage of the
knowledge encapsulated in the document structure
information, and which can thus behave in a more
intelligent fashion.

A basic design goal of SGML was to ensure that
documents encoded according to its provisions should
be transportable from one hardware and software
environment to another without loss of information.
The two features discussed so far both address this
requirement at an abstract level; the third feature
addresses it at the level of the strings of bytes
(characters) of which documents are composed.
SGML provides a general purpose mechanism for
string substitution, that is, a simple machine-
independent way of stating that a particular string of
characters in the document should be replaced by
some other string when the document is processed.
One obvious application for this mechanism is to
ensure consistency of nomenclature; another, more
significant one, is to counter the notorious inability of
different computer systems to understand each other’s
character sets, or of any one system to provide all
the graphic characters needed for a particular



Architectural Computing: Communicating Information and Ideas324

application, by providing descriptive mappings for non-
portable characters. The strings defined by this string-
substitution mechanism are called entities.

SGML and HTML

SGML is used to define HTML. There are many
common features between HTML and SGML including
the descriptive markup nature, notion of a document
type and DTD, platform-independence, tags like
“DOCTYPE” (used to indicate document type), and
comment structure. Formally, HTML is a SGML DTD.
Various implementations of document mark-up
languages have existed. One of the oldest, and
perhaps best known is troff (Ossanna, 1976), a
formatting and phototypesetting program, written
originally in 1973 in PDP-11 assembler and then in
barely-structured early C in 1975 by Joseph Ossanna
(who was killed in an accident in 1977). It was
modelled on the earlier roff which was in turn based
on Multics’ RUNOFF by Jerome Saltzer. In 1979, Brian
Kernighan modified troff so that it could drive
phototypesetters other than the Graphic Systems CAT.
His paper describing that work (Kernighan, 1979)
explains troff’s durability. This software is part of the
Unix operating system which was the environment
used by Berners-Lee (in the form of a Next cube) in
developing the WWW.

VRML

VRML was conceived in the spring of 1994 at the first
annual World Wide Web Conference in Geneva,
Switzerland. Tim Berners-Lee and Dave Raggett
organized a Birds-of-a-Feather (BOF) session to
discuss Virtual Reality interfaces to the World Wide
Web. Several attendees described projects already
underway to build three-dimensional graphical
visualization tools, which inter-operate with the Web.
Attendees agreed on the need for these tools to have
a common language for specifying 3D-world
description and WWW hyper-links. The term Virtual
Reality Markup Language (VRML) was coined, and

the group resolved to begin specification work after
the conference. The word “Markup” was later changed
to “Modelling” to reflect the graphical nature of VRML.

Shortly after the Geneva BOF session, the www-
vrml mailing list was created to discuss the
development of a specification for the first version of
VRML. The list quickly agreed upon a set of
requirements for the first version, and began a search
for technologies which could be adapted to fit the
needs of VRML. The search for existing technologies
turned up a several worthwhile candidates. After much
debate the Open Inventor ASCII File Format from
Silicon Graphics, Inc.was selected.

VRML 1.0 was designed to meet the following
requirements:

• Platform independence
• Extensibility
• Ability to work well over low-bandwidth

connections

Early on, the designers decided that VRML would
not be an extension to HTML. This is as well because
VRML is a file format rather than a mark-up language.
The Virtual Reality Modelling Language (VRML) is a
file format for describing 3D interactive worlds and
objects and may be used in conjunction with the World
Wide Web. VRML has been designed to fulfill the
following requirements:

• Authorability. To make it possible to develop
application generators and editors, as well as
to import data from other industrial formats.

• Completeness. Provide all information
necessary for implementation and address a
complete feature set for wide industry
acceptance.

• Composability. The ability to use elements of
VRML in combination and thus allow re-
usability.

• Extensibility. The ability to add new elements.
• Implementability. Capable of implementation

on a wide range of systems.



Architectural Computing: Communicating Information and Ideas 325

• Orthogonality. The elements of VRML should
be independent of each other, or any
dependencies should be structured and well
defined.

• Performance. The elements should be
designed with the emphasis on interactive
performance on a variety of computing
platforms.

• Scalability. The elements of VRML should be
designed for infinitely large compositions.

• Standard practice. Only those elements that
reflect existing practice, that are necessary
to support existing practice, or that are
necessary to support proposed standards
should be standardised.

• Well-structured. An element should have a
well-defined interface and a simply stated
unconditional purpose. Multipurpose
elements and side effects should be avoided.

There is a mapping between VRML elements and
commonly used 3D application programmer interface
(API) features. The scope of the standard
incorporates:

• a mechanism for storing and transporting two-
dimensional and three-dimensional data
elements.

• methods of representing two-dimensional and
three-dimensional primitive information

• elements for defining characteristics of such
primitives elements

• methods for viewing and modelling two-
dimensional and three-dimensional
information

• a container mechanism for incorporating data
from other metafile formats

• mechanisms for defining new elements which
extend the capabilities of the metafile to
support additional types and forms of
information

IGL

The Author, together with Graham Ellis, a software
analyst from the Information Display Group of
Tektronix®, made the first U.K. installation of Tektronix’
Interactive Graphics Library (IGL) in 1978. This library,
in effect, replaced the Plot-10 Storage Tube library
with a new library to deal with the emerging raster-
scan devices and was an early implementation of the
ACM Core Standard (GSPC, 1977). The main features
of the standard are remarkably similar to the
requirement specifications of VRML 1.0, in that it was
to be platform independent, extendable and was
constrained, not so much by band-width
considerations, as the (relatively) very limited
computer power available at that time. The set of
requirements for VRML listed above (extracted from
the Standard) would serve just as well for IGL/Core
as VRML.

 One of the important features of the “Core
System” was the distinction made between modelling
and viewing functions. The standard was, essentially,
a viewing rather than a modelling system. The
expectation was that given a clear definition in the
standard, modelling capabilities could be built on top
of the other capabilities of the system: this is what
IGL did. Because of the expectation that a variety of
higher-level systems would be built on top of the
proposed standard, the standard was viewed as a
set of core capabilities, and thus became known as
the “Core System”. This approach reflects the situation
where many VRML models are built in dedicated
modelling systems, and, given the well-specified file-
format of VRML, the data model is then exported to
VRML.

Conclusion

The constraints of low-speed dial –up lines to remote
time-sharing mainframe computers that were
prevalent in the 1970’s forced researchers to carefully
consider the structure of software programs. The
spread of relatively affordable minicomputers and



Architectural Computing: Communicating Information and Ideas326

raster graphic terminals forced a consideration of
device dependence. Both of these features have laid
foundations that have been successfully built on by
researchers working in the current distributed
environment of personal networked computers.

References

GINO-F, the General Purpose Graphics Package
Reference Manual. CAD Centre, Cambridge,
1975.

GSPC - Status Report of the Graphics Standards
Planning Committee of ACM/SIGGRAPH.
Published as Computer Graphics Quarterly,
volume 11, number 3, Fall, 1977.

Guedj, R.A. et al, Report on the IFIP W.G. 5.2
Workshop, Methodology in Computer Graphics.
IFIP, July 1976.

Alan Bridges
University of Strathclyde
Department of Architecture and Building Science
Glasgow G4 ONG
a.h.bridges@strath.ac.uk

ISO 8879:1986 Information processing; Text and office
systems; Standard Generalized Markup
Language (SGML).

ISO/IEC 14772 Information Technology - Computer
Graphics and Image Processing - Virtual Reality
Modelling Language (VRML).

Brian W. Kernighan, A Typesetter-independent troff,
AT&T Bell Laboratories Computing Science
Technical Report no. 97, 1979.

Joseph F. Ossanna, nroff/troff User’s Manual. AT&T
Bell Laboratories Computing Science Technical
Report no. 54, 1976.

Plot-10 Terminal Control System. Document 062-
1438-00. Tektronix Inc. Beaverton, Oregon, 1971.

mailto:a.h.bridges@strath.ac.uk



