A mere five years ago I reflected on the twenty-year history of ACADIA. My first thoughts were of the changes that have occurred in membership within the organization. Early on, members were mostly university professors who often worked alone to establish a computer presence in a school or college of architecture in the United States. ACADIA served as a wonderful forum for the exchange of ideas in regard to how this might be accomplished. ACADIA membership was the foundation for numerous scholarly collaborations. Over the years, membership has broadened to include students, design professionals, and even librarians, worldwide. Yet we have maintained a sense of collegiality that is treasured.

My thoughts were also on the changes in how we communicate. The first ACADIA meeting I attended was a “workshop” held at The Ohio State University in 1983. The newsletter was produced by mimeograph or photocopy, its pages were collated and stapled by hand, and it was distributed by US postal service. Those of us involved in running the organization talked to each other on the phone a lot. Several years later, the good guys at University of Michigan set up a BITNET communication for ACADIA members. We received a user ID and password, a cumbersome three-ring binder notebook with elaborate directions for being in contact (text only) by Internet, and we maintained a sense of moderate technological advancement. In 1983, I personally envisioned neither a world wide web hosting an ACADIA site nor a list-serve for ACADIA members on six continents, whereby we would exchange information in the form of text, images, sound, and animation, and even participate in design studios around the world.

It may seem difficult for today’s ACADIA members to realize that in the early eighties we were challenged to convince most architects that computers had a meaningful place in practice. In a field where recent graduates traditionally serve as interns, learning under practiced mentors for three years before licensing, we witnessed an unusual twist for many years: our students who master computer-aided design often become the teachers in their earliest years of practice. Today there are few architecture offices that
work without the assistance of computers. Many firms contribute significantly to the research that is done on using computers in the total building process. We work globally, relying on the Internet to exchange information quickly.

The early forefathers of ACADIA worked on mini-computer based CAD systems. In 1986, the College of Architecture moved into a building designed by Phillip Johnson that housed a center with a computer that contained 4 MB of RAM! This computer, which occupied a room roughly 12’ x 20’ in size, was considered revolutionary. Today we all work on smaller systems far more powerful. In the early 80s, I pointed out to students that database extraction capabilities and parametric modeling were among the most important features of a CAD system. Today we see these incorporated into most CAD systems.

Software developers have recognized ACADIA as a moving force in the field, and many members of ACADIA have provided valuable assistance and feedback in the technological development of CAD and related software. Programs such as the Autodessys Joint Study Program for FormZ have been of mutual benefit to researchers and academicians over these important 25 years of development.

Today computers are a given in practice and in education. Architecture professors generally do not have the intense struggles that existed twenty years ago to fund a computer program, as most universities charge computer-use-fees as part of the tuition package. The majority of students have their own computers, and most software companies provide student discounts for use of the application programs. Academic endeavors can now focus more on curriculum issues.

Looking to the future, I believe that the object modeling systems that are becoming widely accepted in architecture will define the building industry in the next decade. Known as the virtual building (VB), single building model (SBM) or building information model (BIM) systems, these are demonstrably the best solutions to support the demands of the building industry for greatly increased quality, significant improvements in time, and better value for the money. The 2D paradigm, based on proprietary data formats such as DWG, supports documentation for the design & construction teams. Building industry professionals find in the object modeling systems far wider functionality and life cycle support for the assets they design, procure, occupy and manage. It is through the Industry Foundation Classes (IFC) that this support is possible, and some ACADIA members have offered input and provided feedback over the years in the development of this important protocol.

The ACADIA Quarterly, the annual conferences, and the resulting published proceedings all provide substantive exchange of ideas and information. ACADIA-sponsored student competitions and traveling exhibits have played a special role in providing a means by which our students can measure their own work.

The mission of ACADIA was well formulated. I believe the organization has served the profession admirably. I offer my congratulations to the founding fathers, and also to the many faithful members who have contributed to the continuity of the organization and the principles on which it was founded.