The case study pavilion, constructed in a very short time, for low cost and with relatively unskilled labor, demonstrates that the integration of algorithmic form-finding techniques, CNC fabrication workflows, and innovative PETG folded mold techniques enables the practical realization of freeform funicular structures in precast concrete.

ACKNOWLEDGMENTS

Students taking part in the project: Jon Krähling Andersen, Anastasia Borak, Bing-Nian Ian Choo, Lauren Foley, Kari Gurney, Alexandra Wright, Tara Fitzgerald Kennedy, Aleksander Czeslaw Tokarz, Jacob Lohne Elling Christiansen, Yi Lin, and Andrew Stephen Fong. Many thanks to the enthusiastic engineers participating in the project: Jacob Christiansen and Ronni Maden. Thanks also to architect and tutor Stefan Rask Nars for his assistance and participation.

REFERENCES


DIGITAL PLASTER:
A PROTOTYPICAL DESIGN SYSTEM

ABSTRACT

Contemporary computational design processes offer more potential in the design of formally complex architectural outcomes when material processes and fabrication techniques are incorporated within a digital working methodology. This paper discusses the research project “Digital Plaster,” which showcases the development of a complex design system of cast forms based on the integration of digital and analog techniques. As a computational model it embodies the input of the fabrication and structural form-finding processes in flexible formwork plaster casting within an algorithmic behavior self-organizing system of architectural matter. Such an emergent system is defined by the synergic relationships of its parts throughout the whole process and acts upon its evolutionary growth. 

Stella Dourtime
Architectural Association School
Claudia Ernst
Architectural Association School
Manuel Jimenez Garcia
Architectural Association School
Roberto Garcia
Architectural Association School
INTRODUCTION

The research examines the role of analog and digital form-finding processes in the design of architectural prototypes. This study explores the relationship between the analog and digital design methodologies and the architectural outcome. The research aims to develop a methodology that integrates analog and digital design processes, allowing for a more flexible and responsive form-finding approach.

The methodology integrates analog and digital design processes, allowing for a more flexible and responsive form-finding approach. The research examines the role of analog and digital form-finding processes in the design of architectural prototypes. This study explores the relationship between the analog and digital design methodologies and the architectural outcome. The research aims to develop a methodology that integrates analog and digital design processes, allowing for a more flexible and responsive form-finding approach.

The research examines the role of analog and digital form-finding processes in the design of architectural prototypes. This study explores the relationship between the analog and digital design methodologies and the architectural outcome. The research aims to develop a methodology that integrates analog and digital design processes, allowing for a more flexible and responsive form-finding approach.

The research examines the role of analog and digital form-finding processes in the design of architectural prototypes. This study explores the relationship between the analog and digital design methodologies and the architectural outcome. The research aims to develop a methodology that integrates analog and digital design processes, allowing for a more flexible and responsive form-finding approach.

The research examines the role of analog and digital form-finding processes in the design of architectural prototypes. This study explores the relationship between the analog and digital design methodologies and the architectural outcome. The research aims to develop a methodology that integrates analog and digital design processes, allowing for a more flexible and responsive form-finding approach.

The research examines the role of analog and digital form-finding processes in the design of architectural prototypes. This study explores the relationship between the analog and digital design methodologies and the architectural outcome. The research aims to develop a methodology that integrates analog and digital design processes, allowing for a more flexible and responsive form-finding approach.

The research examines the role of analog and digital form-finding processes in the design of architectural prototypes. This study explores the relationship between the analog and digital design methodologies and the architectural outcome. The research aims to develop a methodology that integrates analog and digital design processes, allowing for a more flexible and responsive form-finding approach.
are conventionally reinforced and prestressed, whereas the use of fabric within the composite system of fabric and concrete can serve as reinforcement. The material distribution observed on the section of a cast analog model is based on the patterning technique where the inherent logic of material behavior and structural performance are expressed through the redundancy of material—be it fabric or concrete. Pattern is a design tool, which negotiates the threshold between material’s capacity in organization and spatial differentiation. It pursues the system’s equilibration between structure and ornamentation. Fabric can serve as formwork and reinforcement simultaneously, creating more structural potentialities over the steel-reinforced concrete. Thus, in this research the potential for use of reinforced concrete is growing with the use of fabric formwork as the reinforcement happens during the casting. “It may be noted that although reinforced concrete has been used for over a hundred years and with increasing interest during the last few decades, few of its properties and potentialities have been fully exploited thus far. Apart from the unreasonable inertia of our minds, which do not seem able to adopt freely new ideas, the main cause of this delay is a trivial technicality: the need to prepare wooden forms” (Nervi 1958). This quotation highlights the instrumental role of the material technique.

2.6 Fabric Formwork

The complex process of forming displays emergent behavior as the material negotiation between the flux and weight of concrete and the elasticity inherent within the fabric continuously informs the process of formation. Thus, the interaction of material and technique influences the design and fabrication process. Fabric formwork is based on the consideration of edges and pattern. Concrete and fabric negotiate the form, which is articulated by the constraints of edges and the pressure points, hence the edges or seams and the pattern become structurally operative tools such as pre-tensioning and stretching. Furthermore, the challenge of fabric formwork lies in the connection of fabric–cast elements and the ability to control and design the detailing of these parts. Miguel Fisac used fabric formwork for elaborate surface cladding in multiple scales and ranges of expression. In the 1960s and 1970s he used flexible plastic sheets to cast wall panels (Figure 4).

Following this lineage is contemporary researcher Mark West at the Centre for Architectural Structures and Technology (CAST) at the University of Manitoba. West is seeking innovation in both architectural form generation and building technology, using flexible formwork casting techniques to create columns, panels, and beams at scales of up to 1:1 (Figure 5).

Form emerges through the material negotiation of matter following force paths of tension and compression forces. From an aesthetic point of view, the composite system offers the qualities of handmade fabrication, individuality, and specificity through its pattern. Pattern as an architectural term refers to the standardized design norm. However, in this case, fabric pattern realizes ornamental qualities, which deform the space and structure percepts. The quality of this architectural matter is enhanced by the effects of differently scaled patterning that differentiate the types of form. “The desire for form is also a desire for meaning” (Staiger 2007), and therefore the meaning of form lies in the structural operation of its pattern. In this case the ornamental character reveals the potentialities of fabric-reinforced concrete as a structurally and formally meaningful composite system. From object scale to building scale, digital plaster acquires its experience through patterns that embed structure, ornament, and function. The phenomenological effects of this composite material system are unforeseen qualities. Both Mark West and Miguel Fisac took further the fabrication and morphogenetic process based on fabric formwork and the dynamics of this method in analog. A great example of this dynamic analog process constitutes the P-Wall designed and produced by Andrew Kudless (Kudless 2006). Finally, these advanced construction techniques call for the need to prepare wooden forms” (Nervi 1958). This quotation highlights the instrumental role of the material technique.

3 MATERIAL SYSTEM—PATTERN 1

During this research project, which incorporates fabric formwork fabrication methods within a generative digital design process, that formation process undergoes a series of three negotiations toward an architectural design solution. Configured in different scales, from space to organization to structure, the pattern is the element that negotiates the relationship between the stages of design. First, the scale of material experiments with patterns at the scale of 1:1, which develops an understanding of controlling parameters in fabrication; second, the digital simulation of pattern and material behavior, and third, the spatial organizational model. The last constitutes a patterning language, which allows for strategic design deployments as architectural interventions that utilize the material technique.
3.1 Material Experiments
The first stage of the process (Figure 3) investigates forming through machinic operations on matter. The flexible formwork casting system is based on patterning techniques, including parameters such as pressure points, control, and the development of a folding technique (Figure 4). Applied on a continuous piece of Lycra fabric serves as mold for a number of connected surfaces. The development of a folding technique served as mold for a number of connected surfaces, including parameters such as pressure points, control, and the development of a folding technique. The initial experiments are based on a format of a 42 × 42 cm equilateral Lycra fabric triangle with a 2 cm grid (Figure 5).

The use of flexible formwork casting as a technique is based on the inversion of the surface formation found in suspension into a structure under compression. The objective of the material experiments is to minimize the cross-section by applying various stitching techniques that are defined by different parameters. The combination of different sets of control parameters within the flexible formwork casting system results in a high variation of unpredictable outcomes of patterns and analog models (Figure 6). In this sense, matter and its self-organizational properties are used as an operative tool within the design process.

3.2 Controlling the Material Distribution
Casting in phases is derived from the necessity of material such as plaster to dry and acquire its optimal stability performance. A period of time is needed for these phase-changing properties. Therefore, the formation of complex patterns and the complexity of their fabrication methods required a technique in which time plays a key role. This method became a very significant characteristic of the design process and fabrication, which determines the hierarchy of the elements of each form. The initial phase of the cool can serve as scaffolding for subsequent castings (Figure 7). In this way the architectural system has the capacity to grow and evolve over time, by synching structural parts through the generation of new elements, and to adapt to specific site and programmatic conditions.

3.3 Time-Based Deployment
Casting in phases is derived from the necessity of material such as plaster to dry and acquire its optimal stability performance. A period of time is needed for these phase-changing properties. Therefore, the formation of complex patterns and the complexity of their fabrication methods required a technique in which time plays a key role. This method became a very significant characteristic of the design process and fabrication, which determines the hierarchy of the elements of each form. The initial phase of the cool can serve as scaffolding for subsequent castings (Figure 7). In this way the architectural system has the capacity to grow and evolve over time, by synching structural parts through the generation of new elements, and to adapt to specific site and programmatic conditions.
4 Material Agency

The concept of material self-organization or material agency has been discussed in modern science and philosophy in the context of nonlinear evolutionary theories. In this context Digital Plaster is based on the generative potential of material computation to inform the design process. The simulation techniques that are utilized are incorporated at different scales of material organization that operate at different stages of the design process.

4.1 Systemic Relations—Agent-Based Material Simulation

A simulation of the connections between the flexible formwork casting system variables into an agent-based system is the first level of analysis of algorithmic relations. The flexible formwork casting system parameters—i.e., distance between pressure points and pouring points—informs the agent-based system in which simple interactions of agents follow simple rules. Based on the principle of analog experimentation, the hierarchies of this system simulate the material behavior during the casting. Even though this bottom-up approach provides a more realistic representation of the nonlinear properties of material complexity, this agent-based system of simulation remains an introduction to the simulation techniques (Figures 12 and 13).

Figure 12: Digital Plaster: Systemic relations of material system. The agent-based simulation describes the hierarchies of control variable of the casting technique.

Figure 13: Digital Plaster: Systemic relations of material system. This agent-based simulation describes the hierarchies of control variable of the casting technique.

Figure 14: Digital Plaster: Physically based digital simulations of the casting technique that test the material performance. From left to right: (top) particle simulation; (bottom) inflation of pattern testing the phase cast; (light) inflatable patterns simulation for the fabrication technique.

Figure 15: Digital Plaster: Low-resolution polygon geometry through approximation from the analog models to the digital modeling.

Figure 16: Digital Plaster: Patterning generation technique after stress analysis of the individual shell surface, based on an generative algorithm.
4.2 Physical Simulation—Dynamic Nets

Physically based simulation techniques play a significant role in the formative process (Figure 14). Based on parameters such as liquid flow, direction of gravity, and flexibility of the fabric, they lead to a better design evolution. The first stage of casting simulation in the dynamic software environment is based on a numeric approximation of the physical forces during the casting method. After a constant calibration of the material attributes to regulate the forces’ interaction at the same time, as well as the patterning configurations, the cast process becomes more accurate and the simulation (cast) of more complex surfaces is now possible. Therefore, material experiments are now used to depict the dynamic effects of material formation, not to test the fabric pattern. Despite the technical challenges, simulation in dynamic environments is a design tool that represents a digital form-finding technique that becomes accurate to inform coherently the process of design. The structural behavior of the shell structures is developed through numerical methods and algorithms that are based on the finite element and fluid dynamics analysis methods. The calculation of the surface deformation after casting improves the pattern design and becomes the input for the next step of the simulation. Although the development of a very accurate (to the actual digital casting) simulation is yet to be achieved, the unprecedented digital models are part of the evolution of the design process.

4.3 Informed Geometry

The next stage of the process is targeting the evaluation of the structural performance of low-resolution polygon geometry surface. The low-resolution polygon geometry is extracted approximately from the simulated pattern (Figure 15).

The optimization of the pattern is an important part of the final design. The process connects the structural analysis of the form with the distribution of control points on the surface. An algorithm is utilized to relate the stress point values extracted from the structural analysis to the number of subdivisions on the surface. The lower the value of stress on the area of the surface, the higher the number of subdivisions (the thinner) generated on the surface and vice versa (Figure 16). The aim of this stage is the analysis of the singular form for the design of a network of forms that has distinctive thickness and scale. The design of all the connections of different stages of the cast is based on the evaluation of the maximum deformation of the surface.

5 ORGANIZATIONAL MODEL—PATTERN III

5.2 Agent-Based Simulation—Dynamic Particle-Spring System

At the scale of the organizational model, an agent-based system first represented as catenary networks and subsequently as dynamic surfaces configures the relationship between pattern and space. A dynamic particle-spring system is employed as a form-finding tool, simulating structural behavior of the catenary network (Figure 17) and the dynamic surfaces network (Figure 18). The particles are connected to agents who follow simple rules of movement and connection. While the physical properties of the system ensure that a continuous state of structural equilibrium is maintained, its intelligence—i.e., its self-organizing properties—provides it with the capacity to continuously evaluate and adapt to changing environmental and programmatic conditions, resulting in complex spatial configurations.

5.3 Architectural Prototypical Scenarios

These organizational patterns allow for strategic design deployments as architectural interventions able to negotiate diverse programmatic requirements of inhabitable spaces. Being able to respond to changes in stress distribution, the system has the capacity to negotiate multiple terrain conditions (Figures 19 and 20). The different spatial configurations vary in scale and density of shell structures. The system’s prototypical approach is revealed through the different spatial qualities of density and scale that range from small units to large shell-spans that configure continuous public spaces (Figures 21 and 22). The process generates enclosed spaces, stitched together with continuous and opened surfaces. Typologies include large-span shell structures and compressed multilayered vaulted structures.
5.4 Fabrication Technique

In order to understand and evaluate the efficiency of the pattern and therefore optimize it, the evaluation criteria are derived from the minimal cross-section according to the surface thickness. Optimal weight and avoidance of excess material are calculated to maximize structural stability and form evolution. The fabrication of patterns for single surfaces became a tool for understanding the geometry of the form that led to the 1:1 construction logic of more complex morphologies (Figure 23). The introduction of inflatable membranes facilitated the feasibility of the fabrication process at a larger scale. Patterned membranes are embedded in the fabric patterns and inflated during construction, helping the pattern to find its shape while reducing the dead load of the structure itself. At an architectural scale, the inflatable patterns are generating the enclosures of the openings of the structure. The continuous feedback between the several steps in the process ensures the best structural performance of the pattern at full scale.

6 CONCLUSION

The described design research methodology constitutes a unique way to generate the prototypical form through a coherent process of design through making. This nonlinear methodology allows the design to emerge from a material process that continuously changes its nature. This emerging materiality becomes the constraint in the digital or the analog process until the moment the system embodies it. It generates a prototypical and dynamic behavior toward the programmatic requirements. This prototypical system reveals the qualities of a new architectural language where the multiple aspects and scales of a constraint become intrinsic to the design intent.

The boundaries between the definitions of the structural elements and surfaces become ambiguous after the implementation of a design strategy based on material attributes. During these negotiations within the formative process, a proposed organization of architectural matter results and gradually resets its limits. On the other hand, fabrication becomes an issue of scalability, which—endorsed by simulation methods and structural performance analysis—makes the design more efficient and enhances its constructability. Design elements and variables of aesthetic qualities are utilized to keep an integrated language of making in the system. For example, the seams of the fabric patterns in design could work as structural "seams," i.e., hard profiles, that help the actual scale construction. In this way such a material complexity argues for its efficiency by advancing the system's consciousness for optimal performance. Based on algorithmic methods of a self-organizing system, this material agency of the Digital Plaster design system can incorporate in its ecology many aspects of design objectives of different scales and densities, from concept to fabrication. As unforeseen results evolve, the system argues for its prototypicality and uniqueness through its synergetic behavior in order to adapt in different conditions and provide the most efficient architectural solutions.

ACKNOWLEDGMENTS

Special thanks to all that contributed to the project discussed in this paper: Theodore Spyropoulos, Rob Stuart Smith, Alisa Adrasek, Marta Alemany, Shajay Bhooshan, Muftadas El Sayed, Kait Dunier, Aaron Silver, Apostolos Despotidis, Stilian Retsin, Johanna Huang, Joo dahl, Marochni-Birjandian, Michael Diegla, Rodrigo Chain, Soh Kho, Sophie Tang.

All images presented in this paper are copyright CTRL+M and the Architectural Association School of Architecture, London.

APPENDIX

This paper is based on the design research of a master's thesis project, "Digital Plaster," of the Design Research Laboratory at the Architectural Association School of Architecture, undertaken by the team CTRL+M (Stella Dourtme, Claudia Ernst, Roberto Garcia, Manuel Jimenez Garcia). Design Research Laboratory is a post-professional master's degree in Architecture and Urbanism at the Architectural Association School of Architecture in London. Digital materiality refers to the Protodesign—Digital Materialism studio research agenda supervised by Theodore Spyropoulos (DRL, master's program director) during 2011.

Multiscale patterning refers to the different scales of the patterning methodology that can be applied to various scales, from the structure to the organization of architectural space. Patterning is the stitching and sewing technique utilized during the analog research to tailor and pattern the second layers of flexible fabric formwork.
Form-finding experimentation is the technique utilized by architects such as Gaudí and Frei Otto in the conceptual design of architecture via physical modeling processes that utilized natural forces. These models allowed negotiated design criteria to be embedded within their working methodologies. These material models thus embodied design constraints that allowed for a negotiative process in order to arrive at an architectural solution.

The Centre for Architectural Structures and Technology is an architectural research laboratory that embraces both the poetic and technical dimensions of architectural design. The work of CAST seeks new boundaries for creative thought, design, and building technology through physical explorations of materials, tools, and building methods, the study of natural law, and the free play of imagination.

Material agency here refers to the autonomous material relationships that are represented by agents (individual elements) that negotiate their conditions according to their own “decisions.” The final organization model is a product of this collective behavior indirectly controlled by each element.

REFERENCES

WORK IN PROGRESS
PARAMETRIC PRECAST CONCRETE PANEL SYSTEM

ABSTRACT
The framework for this research focuses on the potential of utilizing a digital toolset to engage information within a surrounding context for the purpose of creating a more intelligent precast concrete panel system. The Parametric Precast Concrete Panel System is an ongoing research project that parametrically defines geometry for the purpose of producing formwork based on quantitative information related to issues such as environmental control systems and sound abatement, as well as qualitative information such as nonstandard variation paneling and formal composition. (Figure 1)

Brad Bell
University of Texas at Arlington / TOPOCAST

Figure 1
Aperture facade panel rendering showing variation in openings and integrated planting pockets.