COMMUNICATING CLIMATE-SMART SCENARIOS WITH DATA-DRIVEN ILLUSTRATIONS

ABSTRACT

To communicate how planning investment scenarios might look on the ground, a new graphics workflow generates streetscape perspectives from planning scenario maps. The workflow connects planning forecasts (incorporating economic, transportation and land development data) to a parametric urban modeler to efficiently generate visual representations according to evolving forecasts.

This paper explains the decision-making context, how regional to pedestrian-scale information is integrated, and the necessity of diverse expertise in creating the workflow. It compares custom programming in ArcGIS, Python and CityEngine for urban infill tasks, and describes approaches for connecting the specialized software to a broader palette of tools.

To generate future urban massing, undervalued lots with high development potential are first identified. The lots are then matched to grid cells in the associated GIS planning scenario map. The cell’s assigned Development Type is used to select possible building types and heights to model on the lot. The undervalued properties are iteratively “redeveloped” until target numbers are met (for example, the number of jobs linked to commercial properties and the number of housing units satisfy development forecasts).

The project explored procedures for refining the model graphics, including developing a streetscape model toolkit, so that different designers could generate consistent and compelling perspectives.

1 Fregonese Associates’ Envision Tomorrow allows planners to paint DevTypes onto map gridcells.
COMMUNICATION CHALLENGE

City governments can reduce greenhouse gas emissions by investing in ways that attract private development of pedestrian and bicycling-friendly communities. They must first convince stakeholders of the importance of investments such as providing convenient services and shopping, expanding transit service, managing parking and providing safer pedestrian and bicycling routes. To involve stakeholders in these decisions requires visual communication that makes the options feel local, relevant and urgent (Carlson 2011). The way a story is told is crucial because imagery and language carry connotations: for example, Portland planners coined the phrase “Twenty-minute neighborhood” to avoid using the dreaded term “Density”.

Metro, Portland’s regional government, initiated the Climate Smart Communities (CSC) Scenarios Project (Metro 2014) to develop a legislature-mandated strategy to reduce greenhouse gas emissions from cars and small trucks by 2035. The CSC Scenarios project seeks to bring local leaders into consensus about how to reduce greenhouse gas emissions while supporting community development visions. Metro evaluated three scenarios for investing in land-use and transportation plans and policies, and evaluated the impact of those investments on regional growth over the next twenty-five years. Informative graphics were needed to communicate the tradeoffs and benefits of alternative investment scenarios to policymakers and the public.

This research project focused on developing accessible illustrations of potential on-the-ground impacts of these scenarios. The project team researched processes to create visualizations that can be updated to reflect forecasted growth. The workflow uses city and regional growth distribution forecasts to generate possible urban development massing and views refined with 3D and 2D graphic procedures. Our goal was to streamline the creation of visuals to communicate urban form and street design at different levels of investment. We prototyped a workflow that allows different designers to create illustrations with a consistent graphic style. This report describes our task, the graphic workflow, and identifies challenges and questions for further work.

PLANNING BACKGROUND

The Metro CSC team worked with regional advisory committees, community and business leaders, and other stakeholders to develop three scenarios for regional growth through 2035:

- **Scenario A**—Recent trends with Existing revenues and policies
- **Scenario B**—Adopted Plans for increased investment (2035 Regional Transportation Plan)
- **Scenario C**—New Plans and Policies for deep investment throughout the region

For each scenario, state-of-the-art models calculate greenhouse gas emissions, regional travel, and the growth and distribution of households and jobs. Scenario B has been calibrated to adopted land-use plans and a regionally developed, local-government-reviewed household and employment forecast adopted by the Metro Council in November 2012.

Data for Scenarios B and C was translated into color-coded maps using Fregonese Associates’ Envision Tomorrow ArcGIS-based Scenario Builder, an urban and regional planning tool for developing and evaluating land-use growth scenarios, seen in (Figure 1). A set of Land-use Development Types (DevTypes) was defined as percentages of building types (such as office, industrial, multifamily residential) and typical building heights (Figure 2). DevTypes were assigned to 264x264 foot grid cells based upon consequences of transportation and land-use policy directives. Envision Tomorrow calculates each cell’s capacity for housing units and jobs, which allows planners to more accurately forecast their growth distribution.

The development capacity of the scenarios was subsequently reviewed by city and county staff and then modeled using MetroScope (Metro 2014). MetroScope is a planning tool developed by Metro’s Data Resource Center that forecasts growth distributions through the interplay of market forces with land-use policies.
and transportation. It takes into account economic factors, demographic trends, local zoning, buildable land, real estate prices, and other development factors to estimate future household and employment growth distribution.

AUDIENCE AND PURPOSE

The team’s job has been to visualize how these broad planning forecasts would potentially look in particular districts. Planning data is often abstract and challenging to understand. Planners generally develop, store and analyze planning schemes in databases and spreadsheets, which generate two-dimensional map graphics. The purpose of this research is to make the data accessible and legible to a wider audience by piloting a workflow for generating three-dimensional illustrations.

The resulting illustrations are intended to help communicate the planning scenarios to stakeholders so they may provide input on what strategies and investments they support for their community. Images can help planners, policymakers and the public develop a common understanding about how policies could affect specific places. For example, transforming vacant land or surface parking lots into new retail centers served by transit while adding new sidewalks and bicycle routes can help create a vibrant, pedestrian-friendly environment. Perspective illustrations can make these possibilities legible, and help build support for these investments as well as other policies such as retrofitting streetscapes to include street lighting, trees and plantings.

The stakeholders include taxpayers, government officials, planning specialists, and business owners. Each group may gravitate to a different form of graphic communication. A mayor might want to see new development from an aerial view to quickly grasp implications of development on a district level, while a business owner might want to see a street view showing modified access to storefronts and public transportation. Both views are relevant but require different types of illustration. We were interested in addressing these varied needs with a workflow that would allow easy updating.

DATA-DRIVEN PARAMETRIC URBAN MODELING

Our research automated and streamlined data modeling and rendering using customized scripts, libraries and procedures. The project comprised two efforts: 1) driving the urban model from Envision Tomorrow’s planning map, and 2) developing images from the model. The graphic workflow assessed relevance and interoperability of multiple tools in modeling Portland’s Gateway District, a suburban node with mixed residential and big box stores (PDC 2012).

Parametric urban modeling tools use procedures or patterns to layout major arteries, generate secondary road networks, divide lots, and place prototypical buildings. Derix (2012) reviews the history of these modelers and their approaches. Starting with Envision Tomorrow maps and Metro’s robust metropolitan urban database, we chose CityEngine 2012 (CE), a procedural modeling and visualization software designed to bring 3D modeling to 2D GIS mapping. Originally developed to create virtual worlds at ETH (Parish and Mueller 2001), CE can model existing blocks using GIS data and visualize alternative development strategies. It can generate fluid urban environments through shape grammar rules known as .CGA scripts. Random seeds driving the shape grammar generate alternative versions of urban models as in (McElvaney, 2012).

Learning the shape grammar is required to grow streets from centerlines, to generate building masses from lot boundaries, and to customize specific façade, roof or other generation rules. The software worked well in creating new urban regions but when used with existing GIS data or places with lots of open space in between buildings, created geometry conflicts and bugs. An upfront
investment cleaning up the urban database and customizing building types provided the ability to quickly model a wide variety of place types. CE excels at packing believable buildings into dense urban environments. It was less successful at modeling suburban or rural locations where buildings have loose relationships to their lot shapes and potentially have multiple geometries.

CONNECTING BUILDING DEVELOPMENT TO JOB AND HOUSING PROJECTIONS

We first examined how to make the Envision Tomorrow DevTypes drive urban massing in CE. We used the DevType categories assigned to grid cells to grow appropriate building types until we hit target job and housing numbers. The steps included:

1. Generate massing of existing buildings from GIS data
2. Identify building lots ripe for development
3. Select appropriate CE building types and define their vertical massing
4. Measure the change in job and housing numbers resulting from demolition and redevelopment
5. Iteratively continue to redevelop property until target numbers were reached

We diagrammed this path from the GIS data, reflecting Envision Tomorrow and MetroScope analysis, through the software platforms. The Envision Tomorrow development grids, property tax lots and existing building footprints were imported into CE on separate layers annotated with relevant GIS data.

Switching to the Python environment within CE, lots are first mapped to development grid cells and assigned corresponding DevTypes. Lots are then iteratively selected and redeveloped based upon the Envision Tomorrow goals for housing and jobs within each grid cell. Grid cells are selected and evaluated relative to target jobs and housing numbers. An underdeveloped lot within the grid cell is chosen based on underutilization of the existing property. Existing buildings are removed and new ones created based on percentage of building types (e.g., single-family, office or industrial) assigned in the lot’s DevType (for example, commercial node, urban residential or light industrial) from its associated grid cell. New buildings are generated and the grid reassessed relative to the goals. This iterative redevelopment continues until all grid cells meet their targets or no further progress towards them is possible.

To implement this workflow, tax lots identified as underutilized by the City of Portland were first sorted according to their assessed value per square foot and divided into three groups. Beginning with the most underutilized, each group was “redeveloped.” Large lots were subdivided and a building type for each lot or sub-lot selected based on the percentage of types within the associated DevType. (Figure 3) shows Metro’s DevType grid from Envision Tomorrow mapped onto City of Portland tax lots with current and potential valuations, and then grid cell DevTypes mapped to lots. Our prototype did not utilize additional job or housing targets to bias building type selection. Existing building masses were deleted and new ones created using CGA rules appropriate to the building types. (Figure 4) shows the redevelopment process with snapshots taken at 33, 66 and 100 percent completion.

SOFTWARE PLATFORM ANALYSIS

In developing workflow, much was learned about the overlapping strengths and capabilities of the three programming environments: GIS, Python and CGA. Each performed certain operations easily; none was sufficient alone. There was some leeway about specific development steps that took place; we depended on local expertise for each part of the workflow development. Below we outline the application, strengths and weaknesses of each environment:

ARCGIS

Used via the ArcGIS GUI to select and separate shapes into layers prior to importing into CityEngine.

Used for:

- 2D pre-processing to identify overlapping elements and separate shapes into groups assigned to different layers in CityEngine
- Annotating shapes with initial data (i.e. DevType)
The most flexible, Python provides a general software language for data manipulation and the iterative loop. Within CityEngine, the development environment tended to be brittle and minor syntax errors caused modules not to load, but provided no additional information.

Used for:
- Loading Envision Tomorrow data from Excel spreadsheets
- Assigning Envision Tomorrow Development Types to grid cells
- Aligning tax lots to grid cells and tagging corresponding DevTypes
- Aligning existing buildings to lots for redevelopment
- Calculating lot value based on GIS data
- Sorting and selecting lots for redevelopment
- The iterative redevelopment loop – incrementally redeveloping lots, deleting conflicting existing buildings, assigning the CGA rules, and creating new buildings

Strengths:
- Flexible and capable of advanced computer algorithms and data structures
- Interpreted environment allows incremental development and interaction with CityEngine
- Provides access to additional data sources such as Excel

Weaknesses:
- Brittle programming and challenging debugging
- Limited CityEngine API to date
- Limited geometry support

CGA
This rule-based programming language for CityEngine shape generation is extremely useful for generating massing models. It provides a feature-rich environment impossible to duplicate in a traditional imperative programming environment such as Python.

Used for:
- Probability-based selection of building types and heights
- Form generation
- Pattern-based lot subdivision

Strengths:
- Ease in creating mass forms
- Ease of selecting alternatives based on probability values

Weaknesses:
- Lacks support for external data input
- Specialized language and knowledge required

While in this iteration the data was manually processed, ArcGIS provides custom programming capabilities for automating these steps.
DEVELOPING DATA-DRIVEN MANIPULATION FURTHER

While CE can be used as a data-driven visualization tool, the environment of GIS/Python/CGA requires stabilization and refinement. A more complete Python programming environment and command interpreter interface would make it possible to quickly and interactively create data-driven views of urban landscapes. The primary hurdles are stabilizing the Python debugging environment, then building a family of Python routines and associating CGA building type files for repeated use.

The current CE workspace appears to be based upon the powerful Eclipse Interactive Development Environment. As Eclipse supports Python development, through integrating that capability, it may be possible to create a more robust programming and debugging environment for manipulating data and coding needed for iterative programming loops. Identifying a fast and robust 3D Python geometry package is also necessary. While CGA-rule files excel at creating building masses, preliminary data manipulation and rule assignment could be incorporated into Python routines driven by Excel spreadsheets defining alternative development scenarios. Once the workflow and associated routines are in place, Excel spreadsheets would provide an easily accessible interface for setting model parameters without additional Python programming.

MODEL REFINEMENT METHODS

Separately from the data-driven modeling, we examined how to generate perspective images from the urban model. A variety of visualization styles were discussed, including cartoon-like graphics using non-photorealistic rendering (Semmo 2012 & Salesien). We thought that the simplified colors and shapes of children’s storybook illustrations could make the spaces both appealing and abstract. But the planning scenarios lead to specific pedestrian streetscape amenities that were hard to automatically portray with abstracted forms. To make the work accessible to future team members, we tried two easy-to-use 3D platforms for refining CE urban models: Google Earth and SketchUp.

CITYENGINE BUILDINGS WITH GOOGLE EARTH

BASE MODEL

We tested Google Earth as a model platform as an alternative to an entirely CE synthesized geometric urban model. Because all procedurally modeled geometry created from georeferenced GIS data was automatically placed accurately when imported into Google Earth, we could quickly place CE buildings exported as .KMZ files. For East Portland’s Gateway district, we created roughly a dozen buildings sized according to MetroScope data and a
recent Urban Design plan (PDC 2012), then imported these directly into Google Earth. Using Google Earth’s 3D environment created by LIDAR scanning, the buildings imported from CE fit right into their existing surroundings.

Using Google Earth worked well to create aerial images with compelling background entourage that were easy to edit, but the specificity of source LIDAR and aerial photographs also often resulted in glaring geometry conflicts (for example, trees, which emerge from new buildings). Applying image filters could produce simplified color palettes; sophisticated edge detection is needed for intelligent urban model simplification (see Döllner 2007, Semmo 2012).

CITYENGINE BUILDINGS WITH SKETCHUP SITE DEVELOPMENT

CityEngine’s real-time interactive graphics can be compelling, as it can incorporate texture mapping and level of detail. But because our client wanted to get away from the look of computer game images, we looked for tools to help us refine CityEngine graphics into appealing stills.

The geometric rules used by parametric modeling programs to create blocks, buildings, and streetscape elements work efficiently and precisely when creating imagined cities but have challenges with the anomalies in real-world GIS data. Moreover, even a neighborhood scale database with detailed buildings can be unwieldy to manipulate. To streamline graphic development, we exported CE’s buildings into a SketchUp base model created from GIS maps. Due to the smaller amount of data, exporting individual buildings could be done much more consistently than large neighborhoods.

To complement the CE buildings and patch the gaps between sidewalks based on street centerlines and building facades based on lot lines, a 3D streetscape toolkit was developed in SketchUp. This toolkit, with linear streets, swales, sidewalks, and other amenities from Metro green street design guidelines (2002), allowed efficient, consistent modeling of pedestrian-friendly urban streets. Buildings from CE were then placed in their appropriate locations, images exported to rendering software and further refined in Photoshop with an entourage library.

Although exporting the 3D model from CityEngine to SketchUp makes the visualizations one step removed from their interactive “data-driven” sources, SketchUp provides an accessible level of modeling control and refinement. These elements could be incorporated into the urban modeler for automatic deployment.

ISSUES: PLACE SPECIFICITY, PLANNING ABSTRACTION AND SOFTWARE FIT

SPECIFICITY: FROM VIRTUAL CITIES TO REAL NEIGHBORHOODS

Our conceptual workflow for moving from GIS to CityEngine to SketchUp went smoothly when working with small hypothetical examples and became much more complicated when applying the workflow to the East Portland Gateway district. The tools are optimized for generating new city fabric; working on an existing neighborhood is much more complex. Sliver lots and small parcels may need to be aggregated to create usable lots. Relationships between different kinds of data must be articulated—building footprints need to be tied to lots and lots matched to planning units, sometimes of different sizes.

Given their ability to create archetypal urban forms, parametric urban modelers have the potential to create more robust sets of DevType descriptions. CGA scripts could generate abstract block types with 3D color-coded massing icons visualizing housing and jobs quantities. The DevTypes painted in Envision Tomorrow could then generate either Lego-block massing, with colors revealing the development type, or more photorealistic neighborhood views. Being able to select a building to see its DevType and related jobs or housing units can make 3D models more informative. Being able to zoom in on detail—from Lego blocks to building façade—accommodates different stakeholders.

Bringing together different kinds of information in a usable form requires teaming up individuals with diverse skills, and orchestrating their skills towards solving these issues. A central data repository with a log system for reporting progress and communicating questions could streamline communication. Similarly, a shared storehouse of typical parametric buildings, street types and DevTypes would accelerate adoption of this method for creating powerful visualizations.

DEPICTING ABSTRACT PLANNING SCENARIOS

Throughout the research, it was difficult to pin down how the investment scenarios would translate into funding for built amenities and the real consequences of broad planning initiatives. For example, new greenfield sites brought into the urban growth boundary change growth distributions and impede development in central areas, even in high-growth scenarios.
The example Gateway district revealed the difficulties of developing specific neighborhood street-corner visualizations. The intention was to show how it could prosper from transit and other investments while reducing greenhouse gas emissions, however, Gateway is already well served by public transportation and, despite its relatively low cost real estate and central Metropolitan location, market factors have deterred its development.

The impact of planning policies must be well understood before the tangible experience of a place can be visualized. While we want to show attractive environments composed of retail shops, plantings, benches and an active pedestrian environment, achieving those results requires investment and design decisions well beyond initial planning.

PARAMETRIC MODELING FOR PLANNING VISUALIZATION

In summary, we have shown that rigorous development forecasting can drive a powerful parametric modeler to depict 3D land-use and transportation scenarios. It works well for neighborhood scale planning and abstract massings. Developing CGA building descriptions, consolidating and filtering real-world GIS data and creating a data-driven urban model requires a substantial time investment. Once created, the system provides a flexible and powerful tool for urban planning discussions. Because visual standards for static images are very high, the parametric models require further processing and benefit from artistic judgment that is difficult to automate.

Our conclusions:

1. USE THE PROPER LEVEL OF ABSTRACTION:

We translated planning abstractions to real-world locations too early in the process. While street-corner perspective images can effectively show how people interact in a pedestrian-friendly street, programming the greater detail needed is laborious and can trigger criticism that derail the larger vision. We could tell the human-scale story better through 2D street sections and enlarged plans that can show sidewalks, swales, trees, building canopies and vehicles, etc. in a more general way.

After conclusion of the project, the subsequent communications plan used simple icons and catch phrases to emphasize abstract concepts as portrayed in video testimonials by articulate stakeholders and leaders. Memorable icons and phrases suited the early stage of decision-making and setting appropriation levels for broad planning initiatives, whereas perspective images would better suit specific implementation measures.
2. PORTRAY THE DESIRED OUTCOME TO LOOK NORMAL:
Video clips of funding supporters gave a human face to the planning concepts and revealed different ways that people found it appealing. By including people from many walks of life along with powerful leaders from diverse districts, the videos portray support for the funding as normal. Sociologists explain that peer pressure is one of the most powerful motivators for sustainable behavior (McKenzie-Mohr 1999).

In a similar way, the scenario designers defined Scenario C as so ideally ambitiously that it made the approved funding level of Scenario B look stingy and boring. The tactic worked in the summer of 2014, as it raised the proposed initiative funding levels about 10-20% per cent above the Scenario B levels.

3. MESSY DIGITAL ECOTONES -- IT’S NOT A PERFECT WORLD:
Cities are complex and even the most competently designed software works best within a specific domain. A lot of time is required where things get messy, especially boundaries at systems interfaces. Data from different sources must be coordinated and filtered to minimize problems. And while parametric urban modelers may generate city massing smoothly for 95 percent of the conditions, the remaining 5 percent (such as odd edge conditions and silver lots) can require a great deal of custom attention.

4. DEVELOP A COMPLEMENTARY ENSEMBLE:
By showing different kinds of information, an ensemble of targeted images can build a case for a development scenario. 3D concept diagrams and color-coded massing to indicate growth potential can complement 2D maps and photographic references. As with all infographics and place-making visualizations, the challenge is to simplify vast amounts of information into a straightforward, clear message. The form of the message needs to be tuned to the audience and the scale of the information: building, street corner, neighborhood, or region.

This project also underlined the importance of interdisciplinary collaboration. Our common mission brought together expertise in economics-driven planning, GIS visualization, 3D architectural design and market communication. Expertise in complementary fields kept discussions lively, drawing out the best from each individual.
ACKNOWLEDGEMENTS

This work was developed with the Data-Driven Illustrations for Climate Smart Communities Scenarios project team including Kim Ellis, Metro Project Manager for CSC Scenarios; Molly Vogt, Metro Project Manager for the Data Resources Center, and team members Clint Chiavarini, Justin Houk, Brian Lockyear, Boyce Postma, Peggy Morell and Ericka Brendel.

Thanks to the Oregon Transportation Research and Education Consortium, Metro and University of Oregon who supported the project. The project summary report can be found online: http://www.otrec.us.

REFERENCES

IMAGE CREDITS

Figure 1. Fregonese Associates’ Envision Tomorrow.
Figure 2. Graphic cards by Ryan Sullivan of Paste in Place graphics.
Figure 3. Image by Brian Lockyear.
Figure 4. Images by Brian Lockyear.
Figure 5. Image by Boyce Postma.
Figure 6. Image by Boyce Postma.
Figure 7. Image by Nancy Cheng.
Figure 8. Image by Boyce Postma.
Figure 9. Image by Boyce Postma.
Figure 10. Image by Boyce Postma edited by Nancy Cheng.

NANCY YEN-WEN CHENG teaches sustainable architectural design and digital methods at the University of Oregon, where she directed the Architecture Department’s Portland Program 2009-2013. She researches how tools, approaches and techniques can shape effective design processes, recently examining how folding surfaces can block heat and shape light at RMIT SIAL. Since leading Virtual Design Studios at the University of Hong Kong 1993-1996, she has used social media and international exchange programs to link students to professional experts. Cheng has served as ACADIA president, national AIA Technology in Architectural Practice group chair, and International Journal of Architectural Computing editor.

BRIAN LOCKYEAR, PhD CS, M.Arch, is a software developer and architectural designer specializing in generative modeling. He developed Heliotrope™, a solar geometry plug-in for Rhino/Grasshopper and has created custom Revit programs for clients including Gensler Architects, Zimmer Gunsul Frasca, and the University of Oregon. His published technical papers have appeared in conferences for the IEEE, the ACM, the AIA Oregon Design Conference, Oregon BEST and ASES. Brian served as an Adjunct Professor in the Department of Architecture at the University of Oregon. He served on ACADIA’s Board of Directors 2009–2014.