STRUCTURAL ENVELOPE

Inspired by Baroque style and Leibniz theory, Gilles Deleuze created a conception of the Fold. Deleuze thought that the unit of matter is the Fold. A fold is always folded within a fold. When a fold goes up to the following fold, unfolding happens. Unfolding is to increase, to grow, whereas folding is to diminish, to reduce, to withdraw into the recesses of a world. The characteristic of the Fold is bending or flexion.

When we apply the concept of the Fold in architectural design, we will have folding architecture which is a kind of non-linear masses with bending trait. What kind of materials are best for fabricating bending form? We are having worked seeking a material which could act as structure and as surface at the same time. It could be called structural surface or structural envelope.
FOUR FUNCTIONS IN ONE BOARD

FRP (Fiber Reinforced Polymer) is exactly this kind of material. It has the abilities to bear load independently and to close the space perfectly. FRP is a compound material which consists of polyurethane foam (as core material) and fiber reinforced resin (as coating on surfaces of the foam). This sandwich polymer is light in weight, strong in intensity, insulative in electricity and heat, and corrosion-resistant. It has been widely used in bridge, fanblade, pressure vessel and aeronautical parts. We used FRP as structural surface in Kaidi project to construct a permanent gate house.

The FRP gate house of Kaidi was constructed prefabricating in factory and assembling in site. The components of the FRP building were manufactured by CNC milling machine, and they are 106mm in thickness (100mm core, 3mm coating in each side).

They have the qualities of insulation, waterproof, structure and decoration. When the components were transported to the construction site, each board was connected to the steel frame and then mutually connected together by pouring joint with the same materials, so as to become an integral building.

THE PROCESSES OF PREFABRICATING AND ASSEMBLING

The FRP structural surface of Kaidi project was divided into 82 pieces (1.5m × 4.5m each) for fabricating with following procedures: a) building a steel stand covered by steel pipe with square section; b) using polyurethane to foam on the stand; c) milling the foam to the out surface shape of the components; d) brushing release agent and pasting fiber reinforced resin in surface of the foam; e) foaming again to certain thickness; f) milling the foam.
Support platform and FRP resin

Paste fiber reinforced resin

Unit of FRP board

Breaking test for FRP board

Fill the gap and make waterproof

Installation of FRP board
WEIGUO XU is professor and chair of Architecture Department in school of architecture at Tsinghua University; He was a visiting scholar at MIT in 2007 and taught in SCI-Arc and USC in 2011–2012; He studied architecture at Tsinghua University, and then started teaching at the same institution before moving to Japan to work for Murano Mori Architects. He was awarded his doctorate from Kyoto University in Japan. On returning to China, he established his own architectural practice (XWG) in Beijing. He is the recipient of many awards, and his seventy works have been published in many journals. He is the author of eleven books. Weiguo Xu was included in the Exhibition of Young Chinese Architects at UIA Congress XX in 1999, and was selected as one of the architects to represent China in the A1 pavilion at ABB2004. He was one of the curators of Architecture Biennial Beijing 2004, 2006, 2008 and 2010. As one of main initiator, he established Digital Architecture Design Association and was elected as Director of DADA in 2012. He organized DADA series events in 2013.

After fabrication in factory, the boards were transported to the construction site, lifted onto the steel frame and connected to the frame. When all pieces of board were in the position, all seams were filled with foam and pasted with fiber reinforced resin, finally polished and decorated by spraying fluorocarbon.