In spring 2014, we had the opportunity to advance an innovative entrepreneurial studio format based on the framework of An Inconvenient Studio, which has had an increasing track record of producing entrepreneurial leaders, startup companies and technologically-advanced design artifacts which do not typically arise from the conventional master-apprentice design studio format. The spring 2014 studio was focused on the topic of robotics and responsive architecture. Consistent with the pedagogical methodology of previous studios, we allowed the students to explore the topic and come up with project proposals and form autonomous companies, which are ready to be launched.

Through a series of self-driven exercises, students were introduced and quickly trained to evolve working prototypes of generative, innovative, interactive, performative and intelligent architectural prototypes, which engage time, information, technology, computation and digital fabrication. Rather than focusing on built artifacts, the studio focused on the development of individuals’ growth, interpersonal dynamics of a startup company and leadership. Design artifacts became by-products that demonstrated the individual development process.
Through a system of self-organization, the studio functioned as a unique sub-institution for learning. The instructors served as intellectual venture capitalists available for the companies to collaborate and learn from each other. Students were advised to raise funds through external resources wherever possible to demonstrate value and relevance to the larger society. Following is one such outcome from the semester’s research.

(urbanNETWORK) strives to bring a new typology of physical interaction to existing monumental public spaces, while simultaneously creating both on-site, city wide as well as global interconnections. Typical urban installations focus on fixed/rigid frameworks which, when tied into the urban landscape, can be utilized as a series of singular physical gathering/interaction points. This focus mixed with limited means of comfortable interaction space and a limited local audience typically leaves these urban spaces under-utilized.

Building upon today’s interconnected lifestyles, (urbanNETWORK) attempts to redefine global public space not through large monumental spaces, but rather through the integration of big data, computation, design, global connectivity, architectural pedagogy and urban space.

(urbanNETWORK) does not rely on singular, fixed objects for interaction, but rather utilizes interactive/smart architectures, which decompose and disburse throughout the site. This decomposition promotes continuous reconfiguration and interaction among users within the urban space. This interaction continues to expand globally through the pods’ interaction with local users and their connections to other local and global pods via the Internet.
REFERENCES


Tom Igoe and Dan O’Sullivan, Physical Computing: Sensing and controlling the physical world with computers. (Boston: Thompson, 2004).

ANDREW JOHN WIT is currently the International Practitioner in Residence at Ball State University. Wit has previously taught, practiced, collaborated and researched in the U.S, Japan, China and Taiwan as well as at the offices of Atelier Bow Wow and Toyo Ito Associates in Tokyo, Japan. In 2013, Wit co-founded the interdisciplinary research/design office WITO* “Laboratory for Intelligent Environments” whose work focuses on the creation of intelligent built environments which bridge all scales.

MAHESH DAAS is the ACSA Distinguished Professor and Chair of the department of architecture at Ball State University. The Association for Computer Aided Design in Architecture (ACADIA) has twice elected him as its president and recognized his leadership in 2013 with the ACADIA Society Award of Excellence. His work stems from the intersections of design, pedagogy, urbanism, interactive environments, critical theory and robotics. In 2011, he chaired an NSF symposium and workshop on Materials and Manufacturing for Extreme Affordability at Ball State.

IMAGE CREDITS

All image credits to Authors (2014).