


4	 TOUCH AND PRESSURE SENSITIVE INTERACTION DESIGN

The interaction design is based on tactile, visual and auditory feedback in order to build 
skills in social communication. As the overall scale is based on that of a car interior, the 
front area is sized for two people to occupy while the back area is suited for one child 
to climb in and around. The primary sequence of interaction is to depress the textile to 
a certain depth in a specific location, referred to here as a trigger, in order to activate an 
animation projected back onto the structure and play a sound clip synchronized with the 
contents of the animation (Figure 13). Triggers are dispersed through the surface. As an 
expanded, though critical aspect of interaction, the trigger points are initially hidden. 
This is to encourage traversing the tensioned textile, and pressing in areas in order to 
locate the triggers, and fostering extended skin contact and stimulation. When a trigger 
is found, a circle pulses to help reinforce memory of where the activation point is. The 
effort of finding trigger points ensures both an aspect of exploration, but also guaran-
tees gross motor movement as a part of the playing process. The quality of resistance 
in pushing on the tensioned textile is an important feature in registering the sense of 
touch. With difficulties in sensory processing, a strong resistance applies pressure to 
the joints not just the hand and finger tips, giving a better chance for the tactility to be 
identified as well as providing a calming effect (Grandin 1992). 

To integrate communication, certain animation and sound sequences are only activated 
when two triggers are pressed simultaneously. Based on input from the P.L.A.Y. project, 
social skills can be developed through play-based interactions by reinforcing circles of 
communication, especially when eye contact is made. Essentially, by repeated rein-
forcements through the means of play, social interaction can be built as a more innate 
response, where for children with ASD, this type of interaction is non-existent, unset-
tling or not instinctive. By spacing the paired triggers across the structure, communica-
tion in position and timing are required. The child can lead the desire to play a certain 
animation and sound effect, but the adult has the opportunity to control the moment 
when it is activated, waiting until vocal or visual communication is made. 

Interaction with the textile is captured and processed through the use of the Microsoft 
Kinect and the game engine Unity. The resolution for the areas of interaction is set by a 
10x10 grid (Figure 14). This reflects the relationship between the low 640x480 resolu-
tion of the depth image in the Kinect, the large footprint of the structure to capture, 
and the desire to foster gross motor movement over fine motor control (Figure 15). 
Activation of a trigger is signified by a change in geometry of the textile surface, as seen 
through the depth image. Unity processes these interactions, yet the animation goes 
through an additional step of being morphed and re-oriented through the software 
MadMapper before being projected onto the surface of the structure. The projections 
are not confined only to the trigger cell; rather they are located to be more encompassing 
or surrounding to the person that is interacting with the structure.

Figure 13
Animations and sound clips play by activating a single 
trigger (top), or activating  two triggers simultaneously 
(bottom).

Figure 14
Trigger points are dispersed through the structure based 
upon a 10x10 grid defined in the gaming software Unity.

Figure 15
Relationship between the structure, Microsoft Kinect 
and projector, where data is processed through Unity, 
integrating MadMapper to tailor the animations to the 
contoured shape of the textile.
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5	 CONCLUSION

The architecture and interaction design of the StretchPLAY prototype is responding to a 
challenge for children with ASD in filtering multiple sensory inputs. The play experience 
itself is intended to be extremely straightforward. This is to foster sensory regulation 
and a sense of control over the quality of the space which is being occupied (Figure 16). 
Ultimately, this is in service of the primary goal of play as the means for embedding social 
interaction as a regular, expected and comfortable part of the experience. In the case of 
Ara, who is non-verbal, communication has to be established through means alternative 
to speaking. Play, in this context, is oriented to both discover the means of communica-
tion and also reinforce them through repetitive, positive and successful experiences. 
Anecdotally, in the context of the busyness of exhibition opening for the StretchPLAY 
prototype, Ara was able to communicate her understanding of the interactions, pressing 
on the textile, and show a continued desire to interact by requesting multiple times to 
climb through the structure (Figure 17). This is notable where, in a global environment of 
extreme visual and auditory stimuli throughout the gallery, a certain sense of focus and 
level of communication was achieved within the envelope of the prototype. In relation 
to this research, ASD is not seen as a disability but rather a unique view of the environ-
ment, in time and space, which can be significantly disruptive. StretchPLAY seeks to 
be a vehicle to understand the nature of such disruptions, in hopes that the child can 
eventually learn techniques in which they can recognize, understand and manage their 
own sensory challenges. In this manner, the architecture is the defined by the continually 
evolving dynamics between behavior and technology. 
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Figure 16
Overlay of multiple projections on the StretchPLAY 
prototype.

Figure 17
The study of this research, Ara, using the StretchPLAY 
prototype, experiencing the visual and tactile nature of 
interacting with the projections and climbing through the 
structure.
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