The Flexing Room Architectural Robot
An Actuated Active-Bending Robotic Structure using Human Feedback

ABSTRACT
Advances in autonomous control of object-scale robots, both anthropomorphic and vehicular, are posing new human–machine interface challenges. In architecture, very few examples of autonomous inhabitable robotic architecture exist. A number of factors likely contribute to this condition, among them the scale and cost of architectural adaptive systems, but on a more fundamental conceptual level also the questions of how architectural robots would communicate with their human inhabitants. The Flexing Room installation is a room-sized actuated active-bending skeleton structure. It uses rudimentary social feedback by counting people to inform its behavior in the form of actuated poses of the room enclosure. An operational full-scale prototype was constructed and tested. To operate it no geometric-based simulation was used; the only communication between computer and structure was in sending values for the air pressure settings and in gathering sensor feedback. The structure’s physical state was resolved through the embodied computation of its interconnected parts, and the people-counting sensor feedback influences its next action. Future work will explore the development of learning processes to improve the human–machine coexistence in space.
INTRODUCTION
The public perception of robotic development has been dominated by anthropomorphic and vehicular robotics. But most machines, whether acting on commands or autonomous, could be considered robotic even if their configuration has no resemblance with living beings. Architecture as a built construct has a long history of incorporating physical adjustment, as with opening doors or windows and other kinetic features. Such controls are predominantly human operated, not connected with each other, and have no overall awareness of the state of the building exists. Building automation is gradually changing this, but architectural qualities are still conspicuously absent from leading home automation initiatives. Spatial modulation or programmatic changes remain largely untouched, limiting the changes to accessorization-driven integration of technology into architecture. What is missing is a discussion of buildings as autonomous robots that, although stationary, can be designed to have short and long term plans, open-ended plans for higher level objectives, and most importantly, a form of intelligence that lets them interact with their inhabitants.

But the type of exchange between building and user is different from the established paradigm of human–machine interaction present in object-scale computer devices. Screen- and touch-based interfaces in mobile devices dominate, and voice control has been established for interaction in architecture across rooms. But those interaction paradigms do not consider any architectural qualities or include architectural features, and instead anthropomorphize architecture by reducing it to a disembodied voice. In the most active areas of sensory-controlled robotics, autonomous driving, sensors are oriented outward to address the challenge of an object moving in space, while ignoring the human-occupied interior for the most part. Posture and gesture sensing have been established in the mainstream through gaming. But a key difference between an architectural robot and its object-scale predecessors is the fact that architecture is inhabited, meaning the human is within the machine. The exchange is thus not only defined in an object-to-object relationship, but by the space the architectural construct defines, and it can potentially also manipulate the position and posture of the human inhabitant (Eng et al. 2005).

Even in our own body it is interesting to observe the understandably strong bias of our consciously perceivable sensory perception on the exterior of our body, where most interactions we consciously respond to take place. The now outdated yet iconic discovery and first mapping of the somatosensory cortex of the brain by Penfield and Boldrey (1937) shows the majority of sensory stimuli being focused on the external skin and only a small fraction on internal organs. In a way, dealing with the sensory response of the inside of architecture is like a human being swallowed by a whale. But just as we are only slowly beginning to understand the complexities of our own bodies and brains, we are also developing a notion of a more differentiated sense of architectural autonomy. Developing more experiments in architectural robotics is therefore crucial to push the discourse into a more architecture-aware realm, and to form a design sensibility for those challenges in research and education. The closest robotic precedent is probably that of wearable exoskeletons, while in a much more directly linked relationship, the actions of the body directly affect the worn robot. If the gap between human and machine is increased, so are the possibilities of design expressions and interpretations of human and machine intent.

The Flexing Room experiment is a simplified implementation of an architectural robot in response to the above questions. The structural skeleton of a room-sized enclosure is tested for its expressive potential and allows humans to occupy the central enclosed space while using sensors to capture their presence and feed it back to the robot. The current iteration does not differentiate human orientation in space nor of time spent in the room, hence the sensory feedback is much too crude to capture human response to architectural expression, thus further development would be needed to integrate such findings.
BACKGROUND
Architectural robotics is an evolving field with overlapping domains (Green and Gross 2012; Kapadia 2010). Most precedents are situated in an interactive architecture paradigm likely shaped by the then contemporary discourse focusing on interaction in human technology interfaces. With the shift towards autonomy in robotics the definition of architectural robotics needs to be revisited. The ADA intelligent room was an early autonomous architectural robotic installation for the EXPO 2002 in Switzerland that benefited from a large collaborative group of different computer and cognitive scientist groups, and is an example of engaging people in space in a social form of interaction between architectural enclosure and visitors. Communication happened through screen-covered walls and lit-up floor tiles, as well as voice (Eng et al. 2003). More recent work on tracking groups of humans in confined indoor spaces succeeded in detecting social cues from minute variations in people's body positions relative to each other and within space using a very large number of cameras installed on the perimeter of a space-closing shell (Joo et al. 2015). Responsive and interactive architecture has long been explored as a way to have technology and kinetics integrated into architecture. Sterk developed tensegrity-responsive roof and tower structures (Sterk 2003) that established a holistic approach combining actuation and structure. Michael Fox's work in the kinetic design group, and later robotic architecture and publication-interactive architecture, explored environment-responsive kinetic structures and architectural programs (Fox and Kemp 2010). The Hyperbody group under Kas Oosterhuis at the Delft University of Technology has explored interactive and kinetic architectural structures such as Muscle (not inhabitable), Musclebody (inhabitable), and Muscle Towers I and II. Bier published a number of papers combining architectural robotics for fabrication with architectural robotics as interactive inhabitable architectural structures (Oosterhuis 2012; Bier 2011; Bier 2014). Biology and neuroscience research provides new insights into the control of high degrees of freedom-articulated limbs, some of which may be applicable for learned architectural responses (Richter 2015; Cheney et al. 2013).

METHODS
The Flexing Room Experiment of a People-Enclosing Architectural Robot
Many examples of interactive architecture have developed façade-like structures or architectural objects that humans can interact with. Fewer examples address the architectural robotic potential of an inhabited robotic space that goes beyond a static room accessorized with screens or interactive elements and instead focus on influencing human behavior (Eng et al. 2005). There is a fundamental shift when the robotic form is not an object but an enclosure, and when the interaction shifts from screen-to-person to space-to-person. The Flexing Room was developed as a minimal version of this, using a kinetic, actively bending actuated skeletal framework to define a volume and to give the room entity some architectural expression in the form of framing postures.

The Development Process
The actuated basic building unit of the Flexing Room is a scaled up and reengineered version of the units in the Bowtower experiment (Kilian and Sabourin 2017). In the
following sections the different aspects of the development are discussed in detail. The prototype development and fabrication was done by the author alone, using an Ultimaker 2+ 3D printer and basic hand power tools and electronics over a period of about 3–4 months in preparation for the installation at the 2017 Seoul Biennale for Architecture and Urbanism (Zaero-Polo and Anderson 2017).

Actuation

The fluidic actuators are based on the cross-fiber sleeve pneumatic tube McKibben actuator design from 1956 (Klute et al. 1999). Since the actuator can only contract, it requires either a paired alternate actuator or spring action to reset it. For the Flexing Room, similarly to the Bowtower test column, pretensioning of the actuator is achieved through a fiberglass recurve bow that is tensioned with an actuator in place of the bowstring. This pretensioning allows the actuator to resist a set amount of compression force depending on the bow tension. The Flexing Room used a larger recurve bow with a complex varying cross section, which produces a more linear pull-force curve of around 30–35 lbs. This equates to the structure being able to carry larger vertical loads to deal with the combined self-weight of the horizontal beams and columns. The fluidic actuator in itself is a compliant actuator: Due to the air pressure and its stretching membrane, it does have some compliance when loaded. The combination with the fiberglass bow pretensioning makes for an overall compliant unit. The compliant behavior is useful for human-inhabitable space and helps to prevent breakage due to the less predictable forces at architectural scale. But it also brings with it a level of uncertainty in the state of the overall linked system given a specific air pressure, as all changes affect the entire structure. McKibben actuator behavior has been modeled (Klute et al. 1998), but the modeling of the overall structure in its flexing looseness in a synchronized fashion with its physical equivalent is not reasonable, for the precision that is needed would require extensive sensor feedback. Conceptually, this led to a rejection of the simulation approach. In the previous Bowtower experiment (Kilian and Sabourin 2017) a simulation-based approach was also rejected, and a feedback-based approach using an accelerometer added to the tower top was taken and used to coordinate all actuators towards a posture goal, in this case a level tower top. In the Flexing Room, the feedback is shifted to an architectural metric of human occupation. The more complex interconnected structure makes isolated measurements less meaningful for positional feedback. Instead the focus is on providing the structure with a simple measure of human evaluation in spatial terms.

Valve Development

Each actuator has a custom-made pressure control unit with two simple open–close solenoid valves controlled by an Arduino metro, a pressure sensor, and some power transistors packaged in custom 3D-printed housing. This choice was made based on the prohibitively high cost of the previously used Festo differential pressure valve units, which are priced around $400–500 per unit. The pressure stability proved to be a problem though in the larger interconnected structure, where feedback cycles between the different actuator units led to uncontrolled feedback cycles in the overall structure, and situations in which the valves never settled down, leading to a convulsion-like overall behavior. This is due to a combination of simple bang-bang control and the lack of proportional pressure valves to allow for a more progressive adjustment of air pressure.

Overall Structure Assembly

A three-bow actuator unit is connected by a 3D-printed connector at 120 degree angles into a level forming unit.
Custom pressure valve development with dual pressure control valves

Original double-height column design modeled

These units were connected at the fiberglass bow ends with neoprene tubing to allow for a flexible ball joint–like connection and easy assembly and disassembly. For the three vertical column sections the lowest ends were attached to a base via a separate aluminum sliding track for each section to ensure a compression and tension load transfer, as well as the expansion and contraction of the fiberglass bow unit stance as the actuators adjust. The top column unit has a shortened inner bow unit to enable the tetrahedral joint geometry with the two incoming horizontal crossbeams. The lowered inner connection rotates the horizontal beam such that the lower one connects with the respective lower bow ends and the upper ones join with each other to form the overall corner joint. This configuration proved to be structurally stable and strong and allowed for some flexibility for actuation. But the lower triple-connecting joint proved too constraining for the overall skeleton to reach its full motion potential, as the inner triangle created a locked ring that also fixed the column’s top vertical inner tips in position. Due to a mezzanine level in the exhibition space that protruded further into the space than expected, it was not possible to install the second column unit level, which further limited the flexibility of the overall structure. The three double columns were joined by horizontal crossbeams of the same configuration. It was a challenge to develop the joint to allow for flexibility and motion in the system while also providing a stable structure in all states, as well as a way to safely and quickly assemble and disassemble the structure. In the corners four joints form an expanding tetrahedron geometry that provides the flexibility required for the motion of the interconnected units. This is an interesting conflict between compliant behavior and structural stability, which increases with scale and the mass of a structure and contributes to the difficulty of kinetic structures at architectural scales. In a future installation this triple connection point would be altered to include a sliding bar between upper ring and vertical support to free up the motion of the top unit, which proved problematic as the triangulation of the upper ring locked the inner bows’ motion.

Robot Base
All three column units connect to the same grey base plinth that provides a level walking surface between the columns for humans to occupy the central space of the Flexing Room in view of the Kinect sensor. The base also houses the pressure, power, and control voltage lines in form of Ethernet cables and 8 mm pressure lines all being fed back under the base floor into the control unit in the middle of one of the triangular sides of the base. The base also delineates the boundary of the room when people step onto the base and into the skeleton frame.

Electronic and Power Control Unit
The control unit is an integral part of the base and extrudes out from the base, and it has the same grey color and materiality as the base to emphasize the complimentary nature of the flexing skeleton and solid sensing base. The tower contains all electronic controls, in the form of three Arduino mega boards, to control upwards of 36 pressure valves in the actuators and to distribute power to the valve controllers and valves. To simplify connectivity, use standard parts, and shield signals from noise, CAT 5 Ethernet cables were used for all connections. In addition, the tower carries a Surface 4 Pro computer facing away from the room center and a Kinect sensor on top to oversee the space.

Sensing
Each of the actuators has a pressure sensor connected to its air volume to maintain the set pressure and correlated contraction length. This sensor also tracks small changes in pressure due to force being applied to the actuator from the outside. It was not actively used in this iteration, but it led to some interesting yet undesirable feedback cycles between actuators throughout the structure that triggered each other through the motion they caused. Overlooking the central enclosed space, a Kinect sensor is
used to register the presence of a person. Each pose of the Flexing Room has a score of how many times a person was present, which is updated based on the sensor feedback. This sensing enabled a rudimentary social feedback for the different actuation configurations, which could be used to measure which poses are more popular than others and influence kinetic changes over time. In the test setup, the one unit with high columns caused problems with the Kinect sensor, which was now located at the same level as the cross beam and frequently interfered with the skeleton detection of people. In a future complete double high column installation, this would be avoided.

Addressing Actuators: Coordinating Actuation for a Particular Result
Similar to the previous Bowtower experiment, none of the actuators was assigned a specific control number, but the connection between control ports and actuators was done randomly on the physical hardware side. The goal was to rely not on knowledge of the physical configuration of the Flexing Room structure, but to use feedback to influence knowledge of the structure and its behavior over time. This intentionally prevents the designer from directly programming coordinated designed motion. Instead every restart created twenty new randomized poses that exposed different pose possibilities of the structure.

Striking Poses
The control was set up in a processing program to generate 29 random actuation pressure values for each of the 20 poses to initialize the posture sequence of the Flexing Room structure. Each pose was held for a set time, ranging from a few seconds to half a minute. During the holding time, the Kinect would test whether a person was present in the room or not. If a person was present, 1 was added to the social counter of that posture. The selection of the next pose was influenced by an increased bias towards poses with a high people count when the structure was in a high mood, and to unpopular poses when in a low mood. The 29 random pressure values result in a physical pose through the physical connectivity of the actively bent actuated structure, and would not be known beforehand but rather resolved in the physical structure itself following the embodied computation principle. Runtimes of around an hour or two were too short to develop a meaningful feedback and possible evolution of the poses based on human feedback in the experimental feedback. The vision is that over time more distinct poses, such as for instance an arching cross beam, would feature more prominently as more people visit the room in that pose. For a more complex learned association between nuanced poses and human responses within the space, machine learning would likely be the only feasible option. To achieve enough data much longer runtimes would be necessary. For prolonged unmonitored runtime the structure would need to be more robustly designed and made more redundant if individual elements failed.

RESULTS
The Flexing Room experiment did not reach a more complex development stage on the behavior side, and only had a limited number of operational hours for testing, which led to...
frequent hardware issues and sensor noise and feedback cycles that only became apparent in the full-scale structure. One surprising problem arose from the structure interfering with its own sensors due to a last minute lowering of the structure's height to a one-level-high ring due to collisions with a mezzanine level in the space. The horizontal truss ended up directly in front of the Kinect sensor and interfered with the skeleton perception of the Kinect sensor, thus leading to physical trashing of the sensor and at times endangering the integrity of the sensor unit itself. Due to the short testing period only anecdotal evidence exists of the human–machine responses. Visitors were generally hesitant to step onto the platform inside the room structure. This was likely due in part to the low height of the horizontal ring and the platform nature of the Flexing Room base, in combination with the possibly intimidating movement and sounds of the actuated frame. As poses were generated randomly per set of twenty, the poses rarely had a coordinated expression. This was an intentional choice to not fall into animating the structure, but to be effective it would have needed gradual adjustment over time in response to perceived human behavior evaluating the effect of the poses. This was not possible in the testing period. Upon entering most visitors looked around the structure for some reference to interact with or look at, and many oriented themselves towards the sensor pole with the Kinect, as they may have been familiar with its function from games or research.

REFLECTION AND IMPLICATIONS FOR ARCHITECTURAL DESIGN

The added active expressive abilities to architectural enclosures poses interesting questions for design. The temptation is to hardcode designed behaviors into a structure like this. But architecture is rarely reducible to a few isolated degrees of freedom, and frequently situations develop for which the architecture has no directly built-in response. This is where a more generalized approach beyond movement of the structure—including more architectural qualities such as light, temperature, and program—with the ability for feedback-based learning, is promising. At the core of this approach is the assumption that in some cases it may be beneficial to not predetermine the behavior of an architectural structure, but rather to allow the structure to learn from how its changes are perceived by its inhabitants. This requires us to move beyond screen-based interfaces and fully embrace space as the mode of exchange within architecture. Architecture has the unique quality of having comparatively large volumes, and therefore a high potential spatial resolution of social scenarios playing out within. The motivation for this work is to not mimic other forms of intelligence and their body plans, but to develop a genuinely architectural version of robotics, thus giving form to physical autonomy and to strengthen the potential of space to act as an architectural-scale communication device between human occupants and the architectural entity.

The Flexing Room installation was a short-term experiment of a full-scale installation to test the physical entity and people’s reactions to it. A challenge in this endeavor is how to design the behavior of robots. In locomotion-based robotics, movement is primarily focused on coordination for the sake of balance and propulsion. Movement as expressive form has a long history in architecture, as evidenced in work by Lynn, Oosterhuis, Spybrook and others. In the Flexing Room motion is used as low-level form of exchange...
between a potentially autonomous architecture and its human inhabitant. Also, legged or arm-based robotics tend to rely on kinematic chains where the different degrees of freedom are highly mechanically interdependent. Architectural degrees of freedom are much more heterogeneous, and interdependencies are more environmentally than mechanically based. Moreover, humans play a larger role as coinhabitants, increasing the social complexity of the overall human–machine system.

Another open question is how to combine different degrees of freedom to achieve a particular result. In a heterogeneous and not necessarily purpose-built architecture there may be many unintended and unknown ways of using the physical artifact to interact with the world and affect change. How can we overcome the perception of programming as a set of behaviors triggered by control inputs, and develop more emergent behaviors throughout the lifetime of the structure that can gain deeper insights into the capabilities of its physical body? The result would be that the architectural robot could learn possible combinations of actions in response to human feedback; this is very different than having a human designing the robot’s actions before it is built and then simply mapping them onto the structure without future change.

CONCLUSION
The development of architectural robots as autonomous entities will be a longer process than any one experiment or any one discipline can deliver. The potential for differentiating architectural robotics from object-based robotics is promising, and the active inclusion of space and human interaction in it is crucial to making progress in this direction. Kinetics seem to promise answers in giving architecture more physical variability and expression, but most likely mechanically based motion is not the answer due to the issues of scale, cost, and robustness. Rather, adaptability on a finer-grained material level, addressing multiple architecturally relevant qualities at once, will lead to a more distributed and robust behavior. The Flexing Room’s actuated active bending structure is a simplified attempt in that direction. The experiment acknowledges the need to depart from animated, previously designed, and simulated structures in order to include unpredictable environmental and human factors directly into the architectural response. Learning open-ended combinations of architectural degrees of freedom in parallel to evolving human use requires more robust and large-scale techniques, such as machine learning processes, to develop architectural expression based in the behavioral and spatial interfaces. Design has always included a certain amount of open-endedness in its programmatic and social approach. What is new is that design intent is not only captured in material form of the built artifact and in information conveyed to its human occupants, but can also evolve based on feedback in the programmed autonomous behavioral side of architectural design.

ACKNOWLEDGEMENTS
The Flexing Room installation was made possible by a commission for its installation for the 2017 Seoul Biennale of Architecture and Urbanism in the “Imminent Commons” exhibit curated by Alejandro Zaera–Polo and Jeffrey Anderson (2017). Furthermore, its development was supported with research funds from Princeton University based on findings developed from the Bbowtower project.
REFERENCES

Bier, Henriette. 2014 “Robotic Building(s).” Next Generation Building 1: 83–92. DOI: 10.7564/14-NGBJ8

The Flexing Room Architectural Robot Kilian

IMAGE CREDITS
Figure 2: © Texas Instruments
Figure 3: © Original diagram from Penfield and Rasmussen (1950)
Figure 4a: © Ekso exoskeleton https://eksobionics.com
All other drawings and images by the author.

Axel Kilian has taught and researched as an Assistant Professor at Princeton University and Delft University of Technology and a Postdoctoral Associate at MIT. He holds a PhD in Design and Computation and a Master of Science in Architectural Studies from MIT as well as a professional degree in architecture from the University of the Arts Berlin. He came to MIT on a German-American Fulbright scholarship. His most recent research work in architectural robotics has been exhibited in the 2016 Istanbul Design Biennale and the 2017 Seoul Biennale of Architecture and Urbanism. His current research is on embodied computation.